首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  国内免费   1篇
化学   6篇
物理学   1篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2008年   1篇
  2005年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
The biodegradable inorganic nanovector based on a layered double hydroxide (LDH) holds great promise for gene and drug delivery systems. However, in vivo targeted delivery of genes through LDH still remains a key challenge in the development of RNA interference therapeutics. Here, we describe in vivo and in vitro delivery system for Survivin siRNA (siSurvivin) assembled with passive LDH with a particle size of 100 nm or active LDH conjugated with a cancer overexpressing receptor targeting ligand, folic acid (LDHFA), conferring them an ability to target the tumor by either EPR‐based clathrin‐mediated or folate receptor‐mediated endocytosis. When not only transfected into KB cells but also injected into xenograft mice, LDHFA/siSurvivin induced potent gene silencing at mRNA and protein levels in vitro, and consequently achieved a 3.0‐fold higher suppression of tumor volume than LDH/siSurvivin in vivo. This anti‐tumor effect was attributed to a selectively 1.2‐fold higher accumulation of siSurvivin in tumor tissue compared with other organs. Targeting to the tumor with inorganic nanovector can guide and accelerate an evolution of next‐generation theranosis system.  相似文献   
3.
4.
Successful clinical application of siRNA to liver-associated diseases reinvigorates the RNAi therapeutics and delivery vectors, especially for anticancer combination therapy. Fine tuning of copolymer-based assembly configuration is highly important for a desirable synergistic cancer cell-killing effect via the codelivery of chemotherapeutic drug and siRNA. Herein, an amphiphilic triblock copolymer methoxyl poly(ethylene glycol)-block-poly(L-lysine)-block-poly(2-(diisopropyl amino)ethyl methacrylate) (abbreviated as mPEG-PLys-PDPA or PLD) consisting of a hydrophilic diblock mPEG-PLys and a hydrophobic block PDPA is synthesized. Three distinct assemblies (i.e., nanosized micelle, nanosized polymersome, and microparticle) are acquired, along with the increase in PDPA block length. Furthermore, the as-obtained polymersome can efficiently codeliver doxorubicin hydrochloride (DOX) as a hydrophilic chemotherapeutic model and siRNA against ADP-ribosylation factor 6 (siArf6) as an siRNA model into cancer cell via lysosomal pH-triggered payload release. PC-3 prostate cell is synergistically killed by the DOX- and siArf6-coloading polymersome (namely PLD@DOX/siArf6). PLD@DOX/siArf6 may serve as a robust nanomedicine for anticancer therapy.  相似文献   
5.
当前,国内外的许多研究小组都致力于开发出新型有效的药物和基因转运系统,用于改善多种治疗因子的药理学作用并降低其毒性。在纳米材料这一类中,碳纳米管(Carbon Nanotubes, CNTs)正逐步引起人们的关注。功能化的CNTs的两个关键优势在于它具有很强的细胞穿透能力和较低的细胞毒性,使其在药物和基因转运领域中的应用成为可能。CNTs可通过形成稳定的共价键或形成以非共价键为基础的超分子结合物来运载肽类、蛋白质、核酸和药物等活性分子,并将其运送至特定的组织、器官中以表达特殊的生物学功能。针对这一研究热点,本文综述了近几年国内外关于碳纳米管在药物和基因转运领域中的应用进展,并探讨了其毒性,以期为这一领域中的研究工作者提供参考。  相似文献   
6.
Photodynamic therapy (PDT) is a promising cancer ablation method, but its efficiency is easily affected by several factors, such as the insufficient delivery of photosensitizers, low oxygen levels as well as long distance between singlet oxygen and intended organelles. A multifunctional nanohybrid, named MGAB, consisting of gelatin-coated manganese dioxide and albumin-coated gold nanoclusters, was designed to overcome these issues by improving chlorin e6 (Ce6) delivery and stimulating oxygen production in lysosomes. MGAB were quickly degraded in a high hydrogen peroxide, high protease activity, and low pH microenvironment, which is closely associated with tumor growth. The Ce6-loaded MGAB were picked up by tumor cells through endocytosis, degraded within the lysosomes, and released oxygen and photosensitizers. Upon near-infrared light irradiation, the close proximity of oxygen with photosensitizer within lysosomes enabled the production of cytotoxic singlet oxygen, resulting in more effective PDT.  相似文献   
7.
This study gives an original methodology to synthetize novel metallo‐drugs nanoparticles relevant for medicinal chemistry. Gold (HAuCl4) are complexes with antitumor compounds (paclitaxel (PTX); docetaxel (DTX)) and dicarboxylic acid‐terminated polyethylene‐glycol (PEG) that plays a role of surfactants. The proposed synthesis is fast and leads to hybrid‐metal nanoparticles (AuNPs) in which drug solubility is improved. The interactions between drugs (DTX, PTX), PEG diacid (PEG), and Au (III) ions to form hybrid nanocarriers called DTX IN PEG‐AuNPs and PTX IN PEG‐AuNPs, are characterized by various analytical techniques (Raman and UV–vis spectroscopies) and transmission electron microscopy. The efficient drugs release under pH conditions is also achieved and characterized showing an amazing reversible equilibrium between Au (III)‐complex‐drug and Au0NPs. For therapeutic purposes, such AuNPs are then decorated with the anti‐EGFR polyclonal antibodies, which specifically recognizes the hERG1 channel aberrantly expressed on the membrane of human lung cancer cells. This paper, through an original chemical approach, will occupy an important position in the field of nanomedicine, and hope that novel perspectives will be proposed for the development of high drug‐loading nanomedicines.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号