首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   4篇
化学   21篇
物理学   2篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2015年   5篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2004年   2篇
  1999年   1篇
排序方式: 共有23条查询结果,搜索用时 790 毫秒
1.
Heavy metal ions are harmful to aquatic life and humans owing to their high toxicity and non‐biodegradability, so their removal from wastewater is an important task. Therefore, this work focuses on designing suitable, simple and economical nanosensors to detect and remove these metal ions with high selectivity and sensitivity. Based on this idea, different types of mesoporous materials such as hexagonal SBA‐15, cubic SBA‐16 and spherical MCM‐41, their chloro‐functionalized derivatives, as well as 4‐(4‐nitro‐phenylazo)‐naphthalen‐1‐ol (NPAN) azo dye have been synthesized, with the aim of designing some optical nanosensors for metal ions sensing applications. The mentioned azo dye has been anchored into the chloro‐functionalized mesoporous materials. The designed nanosensors were characterized using scanning and transmission electron microscopy as well as Fourier transform infrared and UV–visible spectral analysis, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analyses. Their optical sensing to various toxic metal ions such as Cd (II), Hg (II), Mn (II), Fe (II), Zn (II) and Pb (II) at different values of pH (1.1, 4.9, 7 and 12) was investigated. The optimization of experimental conditions, including the effect of pH and metal ion concentration, was examined. The experimental results showed that the solution pH had a major impact on metal ion detection. The optical nanosensors respond well to the tested metal ions, as reflected by the enhancement in both absorption and emission spectra upon adding different concentrations of the metal salts and were fully reversible on adding ethylene diamine tetra acetic acid or citric acid to the formed complexes. High values of the binding constants for the designed nanosensors were observed at pHs 7 and 12, confirming the strong chelation of different metals to the nanosensor at these pHs. Also, high binding constants and sensitivity were observed for NPAN‐MCM‐41 as a nanosensor to detect the different metal ions. From the obtained results, we succeeded in transforming the harmful azo dye into an environmentally friendly form via designing of the optical nanosensors used to detect toxic metal ions in wastewater with high sensitivity.  相似文献   
2.
3.
From the early precipitation-based techniques, introduced more than a century ago, to the latest development of enzymatic bio- and nano-sensor applications, the analysis of phytic acid and/or other inositol phosphates has never been a straightforward analytical task. Due to the biomedical importance, such as antinutritional, antioxidant and anticancer effects, several types of methodologies were investigated over the years to develop a reliable determination of these intriguing analytes in many types of biological samples; from various foodstuffs to living cell organisms. The main aim of the present work was to critically overview the development of the most relevant analytical principles, separation and detection methods that have been applied in order to overcome the difficulties with specific chemical properties of inositol phosphates, their interferences, absence of characteristic signal (e.g., absorbance), and strong binding interactions with (multivalent) metals and other biological molecules present in the sample matrix. A systematical and chronological review of the applied methodology and the detection system is given, ranging from the very beginnings of the classical gravimetric and titrimetric analysis, through the potentiometric titrations, chromatographic and electrophoretic separation techniques, to the use of spectroscopic methods and of the recently reported fluorescence and voltammetric bio- and nano-sensors.  相似文献   
4.
5.
Hydrogen sulfide (H2S) has emerged as an important gasotransmitter in diverse physiological processes, although many aspects of its roles remain unclear, partly owing to a lack of robust analytical methods. Herein we report a novel surface‐enhanced Raman scattering (SERS) nanosensor, 4‐acetamidobenzenesulfonyl azide‐functionalized gold nanoparticles (AuNPs/4‐AA), for detecting the endogenous H2S in living cells. The detection is accomplished with SERS spectrum changes of AuNPs/4‐AA resulting from the reaction of H2S with 4‐AA on AuNPs. The SERS nanosensor exhibits high selectivity toward H2S. Furthermore, AuNPs/4‐AA responds to H2S within 1 min with a 0.1 μM level of sensitivity. In particular, our SERS method can be utilized to monitor the endogenous H2S generated in living glioma cells, demonstrating its great promise in studies of pathophysiological pathways involving H2S.  相似文献   
6.
Liposome-Based Optochemical Nanosensors   总被引:2,自引:0,他引:2  
 This paper describes the optochemical pH and oxygen sensing properties of dye-encapsulating and fluorescently labeled nano-sized unilamellar liposomes. To prepare the oxygen sensitive liposomes a lipid mixture consisting of dimyristoylphospatidylcholine, cholesterol, and dihexadecyl phosphate (molar ratio 5:4:1) all dissolved in dry isopropyl alcohol is injected into a sensing dye solution. The mixture is then sonicated with a liposome maker to form dye-encapsulating liposomes. A lipid mixture consisting of dimyristoylphospatidylcholine, N-(fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt (fluorescein DHPE), cholesterol, and dihexadecyl phosphate (molar ratio 20:1:16:4) is used to prepare the pH sensitive liposomes by the same sonication technique. Fluorescein labeled DHPE phospholipids are combined with DMPC phospholipids in a 1:20 ratio to incorporate the sensing dye directly into the bilayer membrane, virtually eliminating any instability due to dye leakage. Oxygen sensing liposomes are created by encapsulating the oxygen sensitive ruthenium tris(1,10)-phenanthroline complex [Ru(phen)3]. The dye is believed to exist both in free solution within the liposome, and as an adherent on the inner membrane of the liposome. High uniformity of the liposomes is realized by extruding them back and forth through a 100 nm pore-size polycarbonate membrane. TEM images of the liposomes, stained with uranyl acetate, show that the liposomes are unilamellar, spherical in shape, maintain high structural integrity, and average 70 nm in diameter. The liposomes show high stability with respect to dye leaking at room temperature for 8 days, and high photostability when exposed to the excitation light. Individual liposomes are used to monitor the pH and oxygen level in their vicinity during the enzymatic oxidation of glucose by the enzyme glucose oxidase. The newly prepared environmentally sensitive liposomes can be applied for non-invasive pH and oxygen determination in tissues and single biological cells. Received June 8, 1998. Revision November 10, 1998.  相似文献   
7.
Advances in nanoparticle technology have recently offered new tools to the bioanalytical field of research. In particular, new nanoparticle‐based sensors have appeared able to give quantitative information about different species (ions, metabolites, biomolecules) in biosamples through ratiometric measurements. This article describes the methodologies developed so far in the design of such nanosensors. In particular, the different approaches to immobilize fluorescent chemosensor dyes to nanoparticles are presented. Concept designs of ratiometric nanosensors in terms of composition and architecture are also described and illustrated with examples taken from the literature.  相似文献   
8.
We review new methodologies for glucose sensing from our laboratories based on the specific biological interactions between Con A, dextran-coated gold nanoparticles and glucose, and the interactions between dextran, glucose, and boronic-acid capped silver nanoparticles in solution. Our new approaches promise new tunable glucose sensing platforms. Dextran-coated gold nanoparticles were aggregated with the addition of Con A resulting in increase an in absorbance of nanoparticles at 650 nm, where the post-addition of glucose caused the dissociation of the aggregates and thus a decrease in the absorbance at 650 nm. The interaction of glucose and dextran with boronic acid-capped silver nanoparticles in solution resulted in enhanced luminescence intensity cumulatively due to surface-enhanced fluorescence and the decrease in absorbance at 400 nm, with an increase in absorbance at 640 nm. Lifetime measurements were used to distinguish the contribution from the surface-enhanced fluorescence. TEM was employed to assess the aggregation of nanoparticles.  相似文献   
9.
Gold nanoparticles decorated with a double‐armed, deep‐cavity calix[4]pyrrole were prepared and fully characterized. Transmission electron microscopy imaging revealed that the average diameter of the particles was approximately 4 nm both before and after attachment of the receptor to the surface. The calix[4]pyrrole‐functionalized nanoparticles exhibited highly elevated sensing behavior (approximately 1000 times in dichloromethane) relative to its monomeric congener while maintaining its guest selectivity. The receptor–nanoparticle conjugate (nanoreceptor) showed significant aggregation upon addition of the biphenolate anion, an effect ascribed to anion‐mediated interparticle linking. The receptor–nanoparticle conjugate is also capable of extracting the fluoride anion (as its tetrabutylammonium salt) from an aqueous layer to an organic medium. Control experiments revealed that this extraction is not possible when using the analogous monomeric receptor.  相似文献   
10.
In this paper,the relationship of intracellular acidification and apoptosis in Hela cells induced by vin-cristine sulfate has been studied by use of the ratiometric pH nanosensors that have been developed by our group,employing fluorescein isothiocyanate(FITC) doped as the pH-sensitive dye and Tris(2,2'-bipyidyl) dichlororuthenium(II) hexahydrate(RuBpy) doped as reference dye. The pH change of the Hela cells induced by vincristine sulfate has been monitored in vivo,in situ and real time by use of the ratiometric pH nanosensors. The experimental results show that the pH of the apoptotic Hela cells induced by vincristine sulfate has been acidified from 7.11 to 6.51,and the percentage of intra-cellular acidification is correlated with the induced concentration and incubation time of the vincristine sulfate. The further study of the percentage of intracellular acidification and the percentage of apop-tosis of Hela cells at the same time reveals that apoptosis of Hela cells induced by vincristine sulfate is preceded by intracellular acidification. These results would provide theoretical foundation for the therapy of cancer through interfering the pH of cells by use of vincristine sulfate or other anti-cancer drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号