首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   9篇
  国内免费   16篇
化学   82篇
综合类   1篇
物理学   4篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   1篇
  2015年   6篇
  2014年   3篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   9篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
This study presents a methodology for an in-depth characterization of six representative commercial nanofiltration membranes. Laboratory-made polyethersulfone membranes are included for reference. Besides the physical characterization [molecular weight cut-off (MWCO), surface charge, roughness and hydrophobicity], the membranes are also studied for their chemical composition [attenuated total reflectance Fourier spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS)] and porosity [positron annihilation spectroscopy (PAS)]. The chemical characterization indicates that all membranes are composed of at least two different layers. The presence of an additional third layer is proved and studied for membranes with a polyamide top layer. PAS experiments, in combination with FIB (focused ion beam) images, show that these membranes also have a thinner and a less porous skin layer (upper part of the top layer). In the skin layer, two different pore sizes are observed for all commercial membranes: a pore size of 1.25-1.55 angstroms as well as a pore size of 3.20-3.95 angstroms (both depending on the membrane type). Thus, the pore size distribution in nanofiltration membranes is bimodal, in contrast to the generally accepted log-normal distribution. Although the pore sizes are rather similar for all commercial membranes, their pore volume fraction and hence their porosity differ significantly.  相似文献   
2.
《Molecular physics》2012,110(11-12):1107-1114
We report the self-diffusion coefficients and hindrance factor for the diffusion of ions into cylindrical hydrophilic silica nanopores (hydrated silica) determined from molecular dynamics (MD) simulations. We make a comparison with the hindered diffusion coefficients used in continuum-based models of nanofiltration (NF). Hindrance factors for diffusion estimated from the macroscopic hydrodynamic theory were found to be in fair quantitative agreement with MD simulations for a protonated pore, but they strongly overestimate diffusion inside a deprotonated pore.  相似文献   
3.
Nanofiltration (NF) membranes have been widely used for the treatment of electroplating, aerospace, textile, pharmaceutical, and other chemical industries. In this work, halloysite nanotubes (HNTs) were directly anchored on the surface of commercial nanofiltration (NF) membrane by dopamine modification following advantageous bio‐inspired methods. SEM and AFM images were used to characterize the HNTs decorated membrane surface in terms of surface morphology and roughness. Water contact angle (WCA) was employed in evidencing the incorporation of HNTs and dopamine in terms of hydrophilicity or hydrophobicity. Augmentation of HNTs was found to obviously enhance the hydrophilicity and surface roughness resulting in improved water permeability of membrane. More importantly, the rejection ratios of membrane also increased during the removal of heavy metal ions from wastewater. The permeability and Cu2+ rejection ratio of modified NF membrane were as high as 13.9 L·m?2·h?1·bar?1 and 74.3%, respectively. Incorporation of HNTs was also found to enhance the anti‐fouling property and stability of membrane as evident from long‐term performance tests. The relative concentration of HNTs and dopamine on membrane surface was optimized by investigating the trade‐off between water permeability and rejection ratio.  相似文献   
4.
付升  于养信  王晓琳 《化学学报》2007,65(10):923-929
假定纳滤膜具有狭缝状孔, 使用纯水透过系数、膜孔径及膜表面电势来表征纳滤膜的分离特征, 用流体力学半径和无限稀释扩散系数表征了离子特性. 采用扩展Nernst-Planck方程、Donnan平衡模型和Poisson-Boltzmann理论描述了混合电解质溶液中离子在膜孔内的传递现象, 计算了三种商用纳滤膜(ESNA1-LF, ESNA1和LES90)对同阴离子、同阳离子和含四种离子的混合电解质体系中离子的截留率, 并与实验数据进行了比较. 计算结果表明, 电解质溶液中离子在纳滤膜孔内传递的主要机理是离子的扩散和电迁移, 纳滤膜对混合电解质溶液中离子的分离效果主要由空间位阻和静电效应决定. 该模型在低浓度时对含一价离子的混合电解质溶液通过纳滤膜的截留率计算结果比较准确, 但对高浓度或含高价离子的混合电解质溶液则偏差较大.  相似文献   
5.
纳滤膜是一种新型分离膜,其截流分子量介于反渗透膜和超滤膜之间,且对无机盐有一定的截流率。国内外纳滤膜制备方法有L-S相转化法、复合法、荷电化法和无机改性等。纳滤膜研究中存在着膜通量小、膜制作成本较高及抗污染性差等问题,因此选择和制备纳滤膜的材料,优化纳滤技术水处理工艺设计,提高纳滤性能,降低制膜成本,减轻膜污染等已成为当今科学研究的重要课题。  相似文献   
6.
Microbial biofouling is one of the major obstacles for reaching the ultimate goal of realizing a high permeability over a prolonged period of nanofiltration operation. In this study, the hybrid nanocomposite membranes consisting of silver (Ag) nanoparticles with antibiofouling capability on microorganism and polyamide (PA) were prepared by in situ interfacial polymerization and characterized by X‐ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). The hybrid membranes were shown to possess the dramatic antibiofouling effect on Pseudomonas. In addition, Ag nanocomposite membranes had little influence on the performances of the membrane such as on water flux and salt rejection. SEM analysis results showed that all Pseudomonas were dead on the PA/Ag nanocomposite membrane, indicating the effectiveness of silver nanoparticles. This investigation offers a strong potential for possible use as a new type of antibiofouling membrane. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
7.
Ceramic ultrafiltration and nanofiltration membranes (TiO2) are prepared by sol-gel route using a special arrangement which allows the reaction of the reactants directly in the pores of a tubular Al2O3 support or on its surface, respectively. By this direct synthesis the number of technological steps can be reduced which is the main advantage of the method. The produced layers are well joined with the Al2O3 support and the reaction can be adjusted by various technological parameters. The dried and sintered coatings are characterized by X-Ray diffraction, FESEM and AFM. In addition, pore size distribution and filtration properties are investigated and discussed.  相似文献   
8.
《先进技术聚合物》2018,29(2):795-805
In this research, composite membranes were prepared by cross‐linking of poly(vinyl alcohol) (PVA) and glutaraldehyde (GA) on amidoximated ultrafiltration membrane. During this procedure, it was taken advantage of large‐area graphene oxide sheets as graphitic nets in the active layer. These membranes were used to remove an industrial textile dye (Chrysophenine GX) from wastewater. Optimum condition for membrane preparation was 1.5% wt. of PVA, 1.5% wt. of GA, and 0.3% wt. of graphene oxide sheets. Permeation results showed that electrostatic charges on membrane surface have easily converted from positive into negative ones. Contact angle was significantly decreased (63.5° to 28.8°). Final nanofiltration membrane showed lowest fouling rate during removing the industrial direct dye (flux recovery ratio: 96.60%, reversible fouling ratio: 23.82%, and irreversible fouling ratio: 3.39%). Pore size of this membrane was <8 nm, and Chrysophenine GX was eliminated by 98.5% with water permeability of 12.23 L/m2.h.bar.  相似文献   
9.
Covalent organic frameworks (COFs) are attractive candidates for advanced water‐treatment membranes owing to their high porosity and well‐organized channel structures. Herein, the continuous two‐dimensional imine‐linked COF‐LZU1 membrane with a thickness of only 400 nm was prepared on alumina tubes by in situ solvothermal synthesis. The membrane shows excellent water permeance (ca. 760 L m?2 h?1 MPa?1) and favorable rejection rates exceeding 90 % for water‐soluble dyes larger than 1.2 nm. The water permeance through the COF‐LZU1 membrane is much higher than that of most membranes with similar rejection rates. Long‐time operation demonstrates the outstanding stability of the COF‐LZU1 membrane. As the membrane has no selectivity for hydrated salt ions (selectivity <12 %), it is also suitable for the purification of dye products from saline solutions. The excellent performance and the outstanding water stability render the COF‐LZU1 membrane an interesting system for water purification.  相似文献   
10.
Graft copolymers comprising poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(styrene sulfonic acid) side chains, i.e. P(VDF‐co‐CTFE)‐g‐PSSA were synthesized using atom transfer radical polymerization (ATRP) for composite nanofiltration (NF) membranes. Direct initiation of the secondary chlorinated site of CTFE units facilitates grafting of PSSA, as revealed by FT‐IR spectroscopy. The successful “grafting from” method and the microphase‐separated structure of the graft copolymer were confirmed by transmission electron microscopy (TEM). Wide angle X‐ray scattering (WAXS) also showed the decrease in the crystallinity of P(VDF‐co‐CTFE) upon graft copolymerization. Composite NF membranes were prepared from P(VDF‐co‐CTFE)‐g‐PSSA as a top layer coated onto P(VDF‐co‐CTFE) ultrafiltration support membrane. Both the rejections and the flux of composite membranes increased with increasing PSSA concentration due to the increase in SO3H groups and membrane hydrophilicity, as supported by contact angle measurement. The rejections of NF membranes containing 47 wt% of PSSA were 83% for Na2SO4 and 28% for NaCl, and the solution flux were 18 and 32 L/m2 hr, respectively, at 0.3 MPa pressure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号