首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
化学   6篇
  2016年   2篇
  2012年   1篇
  2009年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Proton NMR was used to study the complexation reaction between lead ion and 18-crown-6 in a number of binary acetonitrile-water mixtures. Formation constant for the resulting 11 complexes in different solvent mixtures was determined by computer fitting of the chemical shift-mole ratio data. There is an inverse relationship between the complex stability and amount of water in the mixed solvent. The dissociative kinetics of the complex was studied by proton line-shape analysis. The Arrhenius plots showed a distinct isokinetic temperature at about 25°C at which the decomplexation rate is more or less independent of the solvent composition. the complexation rate and the activation parameters E a , H and S, for the exchange have been determined and found to be strongly solvent dependent. There is actually a linear relationship between the mole fraction of acetonitrile in the mixed solvent and logarithm of the stability constant as well as activation parameters.  相似文献   
2.
A method based on Schreinemakers’s tie-line theory of 1893 is derived for determining the composition and phase amounts in solubility experiments for multi-solvent electrolyte systems. The method uses the lever rule in reverse compared to Schreinemakers’s wet residue method, and is therefore called the reverse Schreinemakers (RS) method. The method is based on simple mass balance principles similar to the wet residues method. It allows for accurate determination of the mixed-solvent phase composition even though part of the solvent may precipitate as complexes between solvent and salt. Discrepancies from determining the composition of salt mixtures by pH titration are discussed, and the derived method significantly improves the obtained result from titration. Furthermore, the method reduces the required experimental work needed for analysis of phase composition. The method is applicable to multi-solvent systems and may be used for the determination of solid-phase compositions, similar to Schreinemakers’s original “rest” method. An example calculation is presented for the Na2CO3-NaHCO3-MEG-H2O system.  相似文献   
3.
In this work, alcian blue 8GX (AB), a copper(II) phthalocyanine derivative, was employed to functionalize graphitic carbon nitride (g‐C3N4) for the preparation of a highly efficient photocatalyst. The approach relies on a facile AB‐assisted ethanol/water mixed‐solvent exfoliation of bulk g‐C3N4. The as‐prepared g‐C3N4/AB hybrid possesses significantly enhanced solution dispersibility and photoelectrochemical performance resulting from the synergistic effect between g‐C3N4 and AB, which involves the optimization of intimate interfacial contact, extension of light absorption range, and enhancement of charge‐transfer efficiency. This synergy contributes enormously to the photocatalytic degradation of rhodamine 6G (R6G) under light irradiation.  相似文献   
4.
Abstract

The exchange kinetics of the lithium ion with cryptand C222 were studied in acetonitrile-nitromethane mixtures by lithium-7 NMR line-shape analysis. In all solvent mixtures used, and over the entire temperature range studied, the chemical exchange of the Li+ ion between the solvated and complexed sites was found to occur via a bimolecular mechanism. The activation parameters Ea, δH?, δS? and δG? for the exchange have been determined. The free energy barrier for the exchange process appears to be nearly independent of the binary mixture composition. The results confirm the preferential solvation of the lithium ion with acetonitrile in the binary mixed solvent systems used.  相似文献   
5.
6.
Proton NMR spectroscopy was used to study the complexation reaction between lithium ion and 12-crown-4, 15-crown-5 and 18-crown-6 in a number of binary acetonitrile-nitrobenzene mixtures. In all cases the exchange between free and complexed crowns was fast on the NMR time scale and only a single population average1H signal was observed. Formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of acetonitrile in the mixed solvent. It was found that, in all solvent mixtures used, 15-crown-5 forms the most stable complex with Li+ ion in the series.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号