首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   1篇
化学   23篇
力学   2篇
综合类   1篇
数学   1篇
  2022年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2012年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1999年   5篇
  1997年   1篇
  1986年   1篇
排序方式: 共有27条查询结果,搜索用时 687 毫秒
1.
The massive and careless use of glyphosate (GLY) in agricultural production raises many questions regarding environmental pollution and health risks, it is then important to develop simple methods to detect it. Electrochemical impedance spectroscopy (EIS) is an effective analytical tool for characterizing properties at the electrode/electrolyte interface. It is useful as an analytical procedure, but it can also help in the interpretation of the involved fundamental electrochemical and electronic processes. In this study, the impedance data obtained experimentally for a microsensor based on molecularly imprinted chitosan graft on 4-aminophenylacetic acid for the detection of glyphosate was analyzed using an exact mathematical model based on physical theories. The procedure for modeling experimental responses is well explained. The analysis of the observed impedance response leads to estimations of the microscopic parameters linked to the faradic and capacitive current. The interaction of glyphosate molecules with the imprinted sites of the CS-MIPs film is observed in the high frequency range. The relative variation of the charge transfer resistance is proportional to the log of the concentration of glyphosate. The capacitance decreases as the concentration of glyphosate increases, which is explained by the discharging of the charged imprinted sites when the glyphosate molecule interacts with the imprinted sites through electrostatic interactions. The phenomenon of adsorption of the ions in the CMA film is observed in the low frequency range, this phenomenon being balanced by the electrostatic interaction of glyphosate with the imprinted sites in the CS-MIPs film.  相似文献   
2.
A liquid chromatography system with a potentiometric microelectrode at the exit end of an open-tubular LC column of 3.5m i. d. nearly shows the theoretically [2, 10] predicted performance of 980 000 theoretical plates for non-retained components at a retention time of a few minutes. Possibilities of controlling the position of the microelectrode tip are given. A distance of one column i. d. between detector and column leads to a loss in column performance of about 15%.  相似文献   
3.
This paper is devoted to the analysis of a linearized theta‐Galerkin finite element method for the time‐dependent coupled systems resulting from microsensor thermistor problems. Hereby, we focus on time discretization based on θ‐time stepping scheme with including the standard Crank‐Nicolson ( ) and the shifted Crank‐Nicolson ( , where δ is the time‐step) schemes. The semidiscrete formulation in space is presented and optimal error bounds in L2‐norm and the energy norm are established. For the fully discrete system, the optimal error estimates are derived for the standard Crank‐Nicolson, the shifted Crank‐Nicolson, and the general case where with k=0,1 . Finally, numerical simulations that validate the theoretical findings are exhibited.  相似文献   
4.
Two stochastic microsensors based on immobilization of the complex between protoporphyrin IX and cobalt on nanographene paste and on the reduced graphene oxide paste were proposed for the simultaneous identification and quantification of bisphenols A (BPA), F (BPF) and Z (BPZ) from water samples. The signatures obtained for the BPA, BPF, and BFZ when both stochastic microsensors were used shown that the microsensors can be used for the discrimination between the three bisphenols in water samples. Very low limits of determination were obtained for the three bisphenols: 1fmol/L for BPA and BPF when the microsensor based on the immobilization of the complex between protoporphyrin IX and cobalt on nanographene paste was used, and 10fmol/L for BPZ when the microsensor based on the immobilization of the complex between protoporphyrin IX and cobalt on reduced graphene oxide paste was used. The linear concentration ranges covered by the proposed stochastic microsensors were: between 10?15 and 10?5 mol/L for BPA, between 10?15 and 10?7 mol/L for BPF, and between 10?13 and 10?10 mol/L for BPZ. The recoveries of the bisphenols in water samples were higher than 99.50 %, with RSD values lower than 1.00 %.  相似文献   
5.
 Fiber optic ion-microsensors based on luminescence decay time have been developed for chloride and potassium. The fiber tip coatings consist of the respective ion-selective lipophilic ion carrier, plasticized PVC, and the ruthenium(II) tris-4,4′-diphenyl-2,2′-bipyridyl ion-pair with Bromothymol Blue [Ru(dibipy)3(BTB)2] as a proton donor. The efficacy of radiationless fluorescence energy transfer from the donor (the ruthenium complex) to the acceptor (BTB) is mediated by the ion concentration within the samples. The chloride response is based on the co-extraction of chloride along with protons from the aqueous sample into a plastiziced PVC membrane, whereas in the presence of potassium ions in the sample, the neutral BTB becomes deprotonated on extraction of potassium ions, with the release of protons. Both processes result in a change in BTB absorbance. The absorption band of deprotonated BTB overlaps significantly with the emission band of the ruthenium complex, allowing radiationless energy transfer to take place. Received July 8, 1998. Revision November 10, 1998.  相似文献   
6.
 An investigation of an array of four Pt microband electrodes 25 μm wide and spaced 25 μm apart was performed with the scanning electrochemical microscope (SECM). Where possible the SECM measurements were confirmed with conventional electrochemical measurements. It is shown how the sensiti- vity of the SECM recycling current to the activity of the underlying surface can be used to probe the homogeneity of enzyme-modified microelectrodes. The diffusion of H2O2 between these micro enzyme- electrodes and unmodified electrodes was investigated and it was demonstrated how the SECM can be a powerful tool in the elucidation of the properties of these electrodes. Received June 8, 1998. Revision November 12, 1998.  相似文献   
7.
于晓平  吴洁  鞠熀先 《化学进展》2014,26(10):1712-1719
微/纳米马达是近年来发展的一种可自主运动的新型微/纳米材料,它制备简单、形态多样、可批量化生产,已逐渐应用于生物样品分析及药物运输等领域。由于生物样品成分复杂,传统检测常常需要多步清洗和分离,操作繁琐、耗时较长。微/纳米马达具有自主运动的特性,通过表面生物功能化,可制备成动态的微型生物传感器,实现多种生物分子如核酸、蛋白质、糖蛋白等的实时、快速和灵敏检测。本文总结了近几年微/纳米马达的发展及其在生物传感中的应用,并展望了其在生物分析中的应用前景。  相似文献   
8.
《Analytical letters》2012,45(11):1467-1484
Natural zeolite clinoptilolite was successfully applied in the sensing technology for electrochemical detection of ammonium. A novel ammonium-selective sensor was developed based on clinoptilolite, possessing intrinsic ammonium-sieving and ion exchange capacity. The sensor design allowed measurements in both differential mode and requiring no classical reference electrode. The sensor selectivity towards Na+, K+, Ca2+, Mg2+, and Al3+ was studied. The limit of detection and the dynamic range of the ammonium-selective conductometric microsensor, determined in the phosphate buffer solution, were 1.0 × 10?8 M and 0–8 mM, respectively. The ammonium sensor presented high operational and storage stability.  相似文献   
9.
《Analytical letters》2012,45(16):2972-2984
Abstract

The first asymmetric potentiometric Gd(III) microsensor is reported here. N-(2-Pyridyl)-N′-(4-nitrophenyl)thiourea (PyTu4NO2) was found to have a very selective and sensitive behavior toward Gd(III) ions, in comparison to other lanthanide ions as well as inner transition and representative metal ions and hence was used as a sensing material in the construction of a Gd(III) microelectrode. The Gd(III) sensor exhibits a Nernstian slope of 17.46 ± 0.3 mV per decade over the concentration range of 1.0 × 10?8 to 1.0 × 10?3 M and a detection limit of 3.0 × 10?9 M of Gd(III) ions. The potentiometric response of the sensor is independent of the solution pH in the range of 4.0–9.0. It manifests advantages of low detection limit and fast response time (10–15 s).  相似文献   
10.
A reservoir type of capillary microsensor for pCO2 measurements is presented. The sensor is based on the measurement of the fluorescence intensity of the anionic form of the pH indicator 1-hydroxy-3,6,8-pyrenetrisulfonate in the form of its ion pair with a quaternary ammonium base in an ethyl cellulose matrix. The glass capillary containing the reservoir sensor was prepared by immersing the tip of the optical fiber into the sensing agent very close to the sensor tip thus providing a very small volume for the sensing reaction. The purpose of the sensing approach is to regenerate the dye/buffer system by diffusion, which may be poisoned by interfering acids, or bleach by photolysis. The fresh cocktail from the reservoir takes the place of protonated form of the dye. The internal buffer system also makes the protonation-deprotonation equilibria reversible. The distal tip of the internal buffer containing reservoir is coated with a gas-permeable but ion-impermeable teflon membrane. The dynamic range for the detection of pCO2 is between 1 and 20 hPa, which corresponds to the range of dissolved CO2 in water. The response time is 15 s and the detection limit is 1 hPa of pCO2. The recovery performance of this sensor can be improved by means of mechanical adjustment of the sensor tip in a micrometric scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号