首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
  国内免费   1篇
化学   43篇
物理学   3篇
  2024年   1篇
  2021年   2篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   7篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  1997年   1篇
排序方式: 共有46条查询结果,搜索用时 0 毫秒
1.
For use in micro-patterned scaffolds in tissue engineering, novel diacrylated triblock macromers (PLA-b-PCL-b-PLA, PGA-b-PCL-b-PGA and PCL-b-PEO-b-PCL) were synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC). All diacrylated polymers were designed as triblock copolymers and involved biodegradable blocks of relatively non-polar epsilon-caprolactone (CL) and polar monomers such as glycolide (GA), lactide (LA) or ethylene oxide (EO). All triblock polymers were prepared in molecular weights of a few kilo daltons via the anionic ring-opening polymerization (ROP) of the corresponding lactide, glycolide or caprolactone using stannous octoate [Sn(Oct)(2)] as catalyst. The polymers had low polydispersity indices, ranging from 1.23 to 1.56. Biodegradable polymeric networks were prepared with conversions of 72-84% via photopolymerization of the triblock diacrylated polymers with 2,2-dimethoxy-2-phenylacetophenone (DMPA) as photoinitiator. PLA-b-PCL-b-PLA copolymers crumbled easily and were not suitable for micro-patterning. PGA-b-PCL-b-PGA copolymers had higher water contact angles than PCL-b-PEO-b-PCL and were also cytocompatible with Fibroblasts 3T3.  相似文献   
2.
3.
In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom‐up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N‐isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm–PDMS substrates optimal for VSMC attachment. To allow long‐term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm–PDMS surfaces were further modified with 3‐aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single‐layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single‐layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue.

  相似文献   

4.
The world is constantly challenged regarding managing environmental and ecological contamination due to human and industrial activities. This is because of the constant threat posed by pollution. Nowadays, membrane-based technology is a growing field, making practically all the separation of foulant from wastewater possible. The membrane fouling resulting from the interaction between the foulant and the membrane surface presents a challenge for the technology in maintaining performance over extended periods of operation. As a result, there is a rising interest in research focusing mainly on creating patterned membrane surfaces that reduce fouling and effectively enhance the surface area. This article comprehensively overviews the most recent and cutting-edge techniques that can be applied to modify and construct high-performance patterned membranes suitable for ultrafiltration, microfiltration, nanofiltration, and reverse osmosis (UF, MF, NF, and RO) water purification processes. In this study, recent developments in membrane material are dissected, focusing on methods for improving surface chemistry, structure, and hydrodynamics, as well as the consequences of these characteristics on filtering performance.  相似文献   
5.
6.
7.
从硝基重氮树脂(NDR)与包裹巯基乙酸的铂纳米颗粒(MA-PtNP)的静电自组装,制备了感光性的自组装多层超薄膜.经选择性紫外曝光和十二烷基硫酸钠(SDS)水溶液显影,光照部分的膜,因层与层之间的离子键转变为共价键,不再被SDS水溶液洗脱而留下来;未光照部分的膜,层与层之间仍是离子键,在显影时被除去,从而形成图像.用AFM和SEM对形成的图像进行了表征.  相似文献   
8.
Click to view : Glycopolymers can be used to display glycans on microarrays in native‐like architectures. The structurally uniform alkyne‐terminated mucin mimetic glycopolymers (see picture; TR=fluorophore) were printed on azide‐functionalized chips by microcontact printing in the presence of a copper catalyst. The surface‐bound glycopolymers bind lectins in a ligand‐specific manner.

  相似文献   

9.
10.
Cells may be captured and released using a photodegradable hydrogel (photogel) functionalized with antibodies. Photogel substrates were used to first isolate human CD4 or CD8 T‐cells from a heterogeneous cell suspension and then to release desired cells or groups of cells by UV‐induced photodegradation. Flow cytometry analysis of the retrieved cells revealed approximately 95 % purity of CD4 and CD8 T‐cells, suggesting that this substrate had excellent specificity. To demonstrate the possibility of sorting cells according to their function, photogel substrates that were functionalized with anti‐CD4 and anti‐TNF‐α antibodies were prepared. Single cells captured and stimulated on such substrates were identified by the fluorescence “halo” after immunofluorescent staining and could be retrieved by site‐specific exposure to UV light through a microscope objective. Overall, it was demonstrated that functional photodegradable hydrogels enable the capture, analysis, and sorting of live cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号