首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2013年   1篇
  2007年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Copolymers of vinyl acetate and methacrylonitrile were prepared by free‐radical polymerization in the presence of the chain‐transfer agent (CTA) ethyl‐α‐ (t‐butanethiomethyl)acrylate. Molecular weight measurements showed that the chain‐transfer constants increased with the vinyl acetate content of the comonomer mixture, ranging from 0.42 for methacrylonitrile to 6.3 for the copolymerization of a vinyl acetate‐rich monomer mix (89/11). The bulk copolymer composition was not appreciably affected by the amount of CTA used in the copolymerization. The efficiency of the addition–fragmentation mechanism in producing specifically end‐functionalized copolymers was investigated with 1H NMR spectroscopy. Spectral peaks consistent with all the expected end groups were observed for all comonomer feeds. Peaks consistent with other end groups were also observed, and these were particularly prominent for copolymers made with lower CTA concentrations. At the highest concentrations used, quantitative measurements of end‐group concentrations indicated that 70–80% of the end groups were those expected on the basis of the addition–fragmentation chain‐transfer mechanism. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2911–2919, 2001  相似文献   
2.
Cationic half-sandwich complexes containing the [(eta(5)-C(5)Me(5))M(Diphos*)] moiety (M=Rh, Ir; Diphos*=chiral diphosphine ligand) catalyze the cycloaddition of the nitrone 3,4-dihydroisoquinoline N-oxide (A) to methacrylonitrile (B) with excellent regio and endo selectivity and low-to-moderate enantioselectivity. The most active and selective catalyst, (S(Rh),R(C))-[(eta(5)-C(5)Me(5))Rh{(R)-Prophos)} (NC(Me)C==CH(2))](SbF(6))(2), has been isolated and fully characterized including the determination of the molecular structure by X-ray diffraction. The R-at-metal epimers of the complexes [(eta(5)-C(5)Me(5))M{(R)-Prophos)}(NC(Me)C==CH(2))](SbF(6))(2) (M=Rh, Ir) isomerize to the corresponding S-at-metal diastereomers. The stoichiometric cycloaddition of A with B is catalyzed by diastereopure (S(M),R(C))-[(eta(5)-C(5)Me(5))M{(R)-Prophos)}(NC(Me)C==CH(2))](SbF(6))(2) with perfect regio and endo selectivity and very good (up to 95 %) ee. The catalyst can be recycled up to nine times without significant loss of either activity or selectivity.  相似文献   
3.
In this original experiment, an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]), was used as the reaction media for reverse atom transfer radical polymerization of methacrylonitrile (MAN) initiated by azobisisobutyronitrile (AIBN) with FeCl3 and isophthalic acid (IA) as catalyst and ligand. The polymerization in [C4mim][PF6] proceeded in a well-controlled manner as evidenced by kinetic studies. Compared with the polymerization in N, N-dimethylformamide (DMF), the polymerization in [C4mim][PF6] not only showed better control of molecular weight and narrower molecular weight distribution but also provided more rapid reaction rate with the ratio of [MAN]:[AIBN]:[FeCl3]:[IA] at 300:1:2:4. The block copolymer PMAN-b-PSt was obtained via a conventional ATRP process in [C4mim][PF6] by using the resulting PMAN as macroinitiator. [C4mim][PF6] and FeCl3/IA could be easily recycled and reused and had no effect on the living nature of reverse atom transfer radical polymerization of MAN.  相似文献   
4.
The copolymers of N-vinyl-2-pyrrolidone and methacrylonitrile (V/N) were prepared by free radical bulk polymerisation. The copolymer composition was determined from the quantitative 13C{1H} NMR spectrum. The reactivity ratios for N-vinyl-2-pyrrolidone (V) and methacrylonitrile (N) were found to be rV=0.04, rN=1.56. The complete spectral assignment of the overlapped and complex carbon and proton NMR spectra were done with the help of two dimensional 13C–1H Heteronuclear Single Quantum Correlation Spectroscopy (HSQC) and Total Correlation Spectroscopy (TOCSY). Distortionless Enhancement by Polarization Transfer (DEPT) was used to differentiate between the methylene, the methine and the methyl carbon resonance signals of the copolymers.  相似文献   
5.
6.
Graft polymerizations of mixtures of methacrylonitrile with n-alkyl methacrylales onto amylomaize were carried out. The graft copolymers were characterized by both IR and 13C-NMR spectroscopies. The influence of the monomer feed on the grafting parameters has been studied. The variation of these parameters with the mole fraction of methacrylate in the feed for the first three systems studied, MAN/MMA, MAN/EMA and MAN/BMA, was similar: thus, percent grafting (%G, percent weight of grafted polymer with respect to grafted amylomaize), percent grafted amylomaize (%GA, percent weight of grafted amylomaize with respect to initial amylomaize), percent grafting conversion (%Cg, percent weight of grafted polymer with respect to initial monomer), and percent total conversion (%Ct, percent weight of total acrylic polymer with respect to initial monomer) were increased, but percent grafting efficiency (%GE, percent weight of graft copolymer with respect to total polymer) decreased. The system MAN/HMA presented values of grafting parameters lower than those of the previous systems. The optimum values were obtained at 0.6 HMA mole fraction in the monomer feed. When the number of carbon atoms of the n-alkyl group rises from 1 to 4, the increase of the n-alkyl group length gives rise to increases of the %G %Cg and %Ct values and decreases of the %GE and %GA values. For the largest methacrylate, the grafting reaction appears to be controlled by the lesser accessibility of the monomer to the active sites of the carbohydrate. © 1992 John Wiley & Sons, Inc.  相似文献   
7.
Poly(styrene‐comethacrylonitrile)s were polymerized in solutions with different polarities (n‐hexane and THF) by low‐temperature γ‐ray irradiation polymerization in a temperature range of −83.6–30 °C. It was found by IR measurement that the composition of the copolymers changed remarkably due to the effects of the polarity of solvents and the polymerization temperature. The thermal degradation behavior in the flash pyrolysis and in the continuous heating pyrolysis of these copolymers was measured by Py‐GC and controlled rate thermogravimetry (CRTG). The effects of the copolymer composition and sequence distribution on the thermal degradation behavior were investigated. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3569–3577, 2000  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号