首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   3篇
化学   10篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The metalloradical activation of o-aryl aldehydes with tosylhydrazide and a cobalt(II) porphyrin catalyst produces cobalt(III)-carbene radical intermediates, providing a new and powerful strategy for the synthesis of medium-sized ring structures. Herein we make use of the intrinsic radical-type reactivity of cobalt(III)-carbene radical intermediates in the [CoII(TPP)]-catalyzed (TPP=tetraphenylporphyrin) synthesis of two types of 8-membered ring compounds; novel dibenzocyclooctenes and unprecedented monobenzocyclooctadienes. The method was successfully applied to afford a variety of 8-membered ring compounds in good yields and with excellent substituent tolerance. Density functional theory (DFT) calculations and experimental results suggest that the reactions proceed via hydrogen atom transfer from the bis-allylic/benzallylic C−H bond to the carbene radical, followed by two divergent processes for ring-closure to the two different types of 8-membered ring products. While the dibenzocyclooctenes are most likely formed by dissociation of o-quinodimethanes (o-QDMs) which undergo a non-catalyzed 8π-cyclization, DFT calculations suggest that ring-closure to the monobenzocyclooctadienes involves a radical-rebound step in the coordination sphere of cobalt. The latter mechanism implies that unprecedented enantioselective ring-closure reactions to chiral monobenzocyclooctadienes should be possible, as was confirmed for reactions mediated by a chiral cobalt-porphyrin catalyst.  相似文献   
2.
3.
4.
Metalloradical species [Co2Fv(CO)4].+ ( 1 .+, Fv=fulvalenediyl) and [Co2Cp2(CO)4].+ ( 2 .+, Cp=η5‐C5H5), formed by one‐electron oxidations of piano‐stool cobalt carbonyl complexes, can be stabilized with weakly coordinating polyfluoroaluminate anions in the solid state. They feature a supported and an unsupported (i.e. unbridged) cobalt–cobalt three‐electron σ bond, respectively, each with a formal bond order of 0.5 (hemi‐bond). When Cp is replaced by bulkier Cp* (Cp*=η5‐C5Me5), an interchange between an unsupported radical [Co2Cp*2(CO)4].+ (anti‐ 3 .+) and a supported radical [Co2Cp*2(μ‐CO)2(CO)2].+ (trans‐ 3 .+) is observed in solution, which cocrystallize and exist in the crystal phase. 2 .+ and anti‐ 3 .+ are the first stable thus isolable examples that feature an unsupported metal–metal hemi‐bond, and the coexistence of anti‐ 3 .+ and trans‐ 3 .+ in one crystal is unprecedented in the field of dinuclear metalloradical chemistry. The work suggests that more stable metalloradicals of metal–metal hemi‐bonds may be accessible by using metal carbonyls together with large and weakly coordinating polyfluoroaluminate anions.  相似文献   
5.
Species with 2‐center, 3‐electron (2c/3e?) σ bonds are of interest owing to their fascinating electronic structures and potential for interesting reactivity patterns. Report here is the synthesis and characterization of a pair of zerovalent (d9) trigonal pyramidal Rh and Ir complexes that feature 2c/3e? σ bonds to the Si atom of a tripodal tris(phosphine)silatrane ligand. X‐ray diffraction, continuous wave and pulse electron paramagnetic resonance, density‐functional theory calculations, and reactivity studies have been used to characterize these electronically distinctive compounds. The data available highlight a 2c/3e? bonding framework with a σ*‐SOMO of metal 4‐ or 5dz2 parentage that is partially stabilized by significant mixing with Si (3pz) and metal (5‐ or 6pz) orbitals. Metal‐ligand covalency thus buffers the expected destabilization of transition‐metal (TM)‐silyl σ*‐orbitals by d–p mixing, affording well‐characterized examples of TM–main group, and hence polar, 2c/3e? σ “half‐bonds”.  相似文献   
6.
The metalloradical activation of ortho‐benzallylaryl N‐tosyl hydrazones with [Co(TPP)] (TPP=tetraphenylporphyrin) as the catalyst enabled the controlled exploitation of the single‐electron reactivity of the redox non‐innocent carbene intermediate. This method offers a novel route to prepare eight‐membered rings, using base metal catalysis to construct a series of unique dibenzocyclooctenes through selective Ccarbene?Caryl cyclization. The desired eight‐membered‐ring products were obtained in good to excellent yields. A large variety of aromatic substituents are tolerated. The proposed reaction mechanism involves intramolecular hydrogen atom transfer (HAT) to CoIII–carbene radical intermediates followed by dissociation of an ortho‐quinodimethane that undergoes 8π cyclization. The mechanism is supported by DFT calculations, and the presence of radical‐type intermediates was confirmed by trapping experiments.  相似文献   
7.
8.
The metalloradical activation of o‐aryl aldehydes with tosylhydrazide and a cobalt(II) porphyrin catalyst produces cobalt(III)‐carbene radical intermediates, providing a new and powerful strategy for the synthesis of medium‐sized ring structures. Herein we make use of the intrinsic radical‐type reactivity of cobalt(III)‐carbene radical intermediates in the [CoII(TPP)]‐catalyzed (TPP=tetraphenylporphyrin) synthesis of two types of 8‐membered ring compounds; novel dibenzocyclooctenes and unprecedented monobenzocyclooctadienes. The method was successfully applied to afford a variety of 8‐membered ring compounds in good yields and with excellent substituent tolerance. Density functional theory (DFT) calculations and experimental results suggest that the reactions proceed via hydrogen atom transfer from the bis‐allylic/benzallylic C?H bond to the carbene radical, followed by two divergent processes for ring‐closure to the two different types of 8‐membered ring products. While the dibenzocyclooctenes are most likely formed by dissociation of o‐quinodimethanes (o‐QDMs) which undergo a non‐catalyzed 8π‐cyclization, DFT calculations suggest that ring‐closure to the monobenzocyclooctadienes involves a radical‐rebound step in the coordination sphere of cobalt. The latter mechanism implies that unprecedented enantioselective ring‐closure reactions to chiral monobenzocyclooctadienes should be possible, as was confirmed for reactions mediated by a chiral cobalt‐porphyrin catalyst.  相似文献   
9.
Reactions of the methoxo complexes [{M(mu-OMe)(cod)}(2)] (cod=1,5-cyclooctadiene, M=Rh, Ir) with 2,2-dimethylaziridine (Haz) give the mixed-bridged complexes [{M(2)(mu-az)(mu-OMe)(cod)(2)}] [(M=Rh, 1; M=Ir, 2). These compounds are isolated intermediates in the stereospecific synthesis of the amido-bridged complexes [{M(mu-az)(cod)}(2)] (M=Rh, 3; M=Ir, 4). The electrochemical behavior of 3 and 4 in CH(2)Cl(2) and CH(3)CN is greatly influenced by the solvent. On a preparative scale, the chemical oxidation of 3 and 4 with [FeCp(2)](+) gives the paramagnetic cationic species [{M(mu-az)(cod)}(2)](+) (M=Rh, [3](+); M=Ir, [4](+)). The Rh complex [3](+) is stable in dichloromethane, whereas the Ir complex [4](+) transforms slowly, but quantitatively, into a 1:1 mixture of the allyl compound [(eta(3),eta(2)-C(8)H(11))Ir(mu-az)(2)Ir(cod)] ([5](+)) and the hydride compound [(cod)(H)Ir(mu-az)(2)Ir(cod)] ([6](+)). Addition of small amounts of acetonitrile to dichloromethane solutions of [3](+) and [4](+) triggers a fast disproportionation reaction in both cases to produce equimolecular amounts of the starting materials 3 and 4 and metal--metal bonded M(II)--M(II) species. These new compounds are isolated by oxidation of 3 and 4 with [FeCp(2)](+) in acetonitrile as the mixed-ligand complexes [(MeCN)(3)M(mu-az)(2)M(NCMe)(cod)](PF(6))(2) (M=Rh, [8](2+); M=Ir, [9](2+)). The electronic structures of [3](+) and [4](+) have been elucidated through EPR measurements and DFT calculations showing that their unpaired electron is primarily delocalized over the two metal centers, with minor spin densities at the two bridging amido nitrogen groups. The HOMO of 3 and 4 and the SOMO of [3](+) and [4](+) are essentially M--M d-d sigma*-antibonding orbitals, explaining the formation of a net bonding interaction between the metals upon oxidation of 3 and 4. Mechanisms for the observed allylic H-atom abstraction reactions from the paramagnetic (radical) complexes are proposed.  相似文献   
10.
No support required: Unlike the unobservable radical cations [{CpM(CO)(3) }(2) ](.+) (M=W, Mo), derivatives [{CpM(CO)(2) (PMe(3) )}(2) ](.+) are stable enough to be isolated and characterized. Experimental and theoretical studies show that the shortened M?M bonds are of order 1 1/2, and that they are not supported by bridging ligands. The unpaired electron is delocalized over the M?M cores, with a spin density of about 45?% on each metal atom.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号