首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   4篇
化学   15篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Two structurally similar trans‐bis(pyridine) dichloropalladium(II)‐ and platinum(II)‐type complexes were synthesized and characterized. They both self‐assemble in n‐hexane to form viscous fluids at lower concentrations, but form metallogels at sufficient concentrations. The viscous solutions were studied by capillary viscosity measurements and UV/Vis absorption spectra monitored during the disassembly process indicated that a metallophilic interaction was involved in the supramolecular polymerization process. For the two supramolecular assemblies, uncommon continuous porous networks were observed by using SEM and TEM revealed that they were built from nanofibers that fused and crosslinked with the increase of concentration. The xerogels of the palladium and platinum complexes were carefully studied by using synchrotron radiation WAXD and EXAFS. The WAXD data show close stacking distances driven by π–π and metal–metal interactions and an evident dimer structure for the platinum complex was found. The coordination bond lengths were extracted from fitting of the EXAFS data. Moreover, close PtII–PtII (PdII–PdII) and Pt?Cl (Pd?Cl) interactions proposed from DFT calculations in the reported oligo(phenylene ethynylene) (OPE)‐based palladium(II) pyridyl supramolecular polymers were also confirmed by using EXAFS. The PtII–PtII interaction is more feasible for supramolecular interaction than the PdII–PdII interaction in our simple case.  相似文献   
2.
3.
Two linear rod‐like platinum complexes, which only differed in the linkage, were prepared. They both self‐assemble into metallogels in nonpolar solvents; however, a very big contrast was observed. Unexpectedly, a much weaker gel was acquired upon replacing the ester linkage by an amide group. The intermolecular hydrogen bonding offered by the amide motif leads to a different stacking fashion and mechanism. The results demonstrated herein contribute to the rational design of metallogels as well as other functional supramolecular materials.  相似文献   
4.
A silver ion (Ag+)‐triggered thixotropic metallo(organo)gel of p‐pyridyl‐appended oligo(p‐phenylenevinylene) derivatives (OPVs) is reported for the first time. Solubilization of single‐walled carbon nanohorns (SWCNHs) in solutions of the pure OPVs as well as in the metallogels mediated by π–π interactions has also been achieved. In situ fabrication of silver nanoparticles (AgNPs) in the SWCNH‐doped dihybrid gel leads to the formation of a trihybrid metallogel. The mechanical strength of the metallogels could be increased stepwise in the order: freshly prepared gel<dihybrid gel<trihybrid gel. Microscopic studies of the trihybrid gel indicate the formation of three distinct morphologies, that is, nanoscale metal–organic particles (NMOPs), flowerlike aggregates of SWCNHs and AgNPs, and also their integration with each other. Detailed studies suggest lamellar organizations of the linear metal–ligand complexes in the NMOPs, which upon association create a three‐dimensional network that eventually immobilizes the solvent molecules.  相似文献   
5.
ABSTRACT

The role of metal salts in inducing supramolecular gel network formation was analysed by reacting two pyridyl-N-oxide amides with various diamagnetic zinc(II) and cadmium(II) salts. Metal induced supramolecular gelation was observed for zinc(II) and cadmium(II) chloride complexes in water and the morphologies of the xerogels were analysed by scanning electron microscopy (SEM). The relative gel strength was corroborated with various non-bonding interactions observed in the solid-state structures of zinc(II) complexes using X-ray diffraction. The non-bonding interactions of the pyridyl-N-oxide amides and the metal complexes were compared to find the key interactions responsible for metallogel formation. The anion induced stimuli-responsive property of the metallogels was studied in the presence of halides and cyanide anions. The cadmium(II) gels were stable in presence of two equivalents of halides but the network collapsed in presence of cyanide anion in water and this property can be used to detect cyanide anions in water.  相似文献   
6.
《化学:亚洲杂志》2017,12(20):2703-2710
The preparation and characterization of a new metallogelator based on the IrIII discrete cyclometalated complex [(ppy)2Ir(bpy)](CH3CH2OCH2CO2) are reported, where H(ppy) is 2‐phenylpiridine and bpy is 2,2′‐bipyridine, which is used as an ancillary ligand. The compound is able to self‐assemble in water in a range of concentrations between 3 % and 6 % w/w, creating a luminescent ordered supramolecular gel. The gel and xerogel architectures were investigated through polarized optical microscopy (POM), SEM and TEM microscopies coupled with powder X‐ray diffraction. The gel supramolecular organization is characterized by columnar tetragonal strands, already present at high dilution conditions, of cations surrounded by counteranions. These strands, in turn, are self‐assembled in an oblique columnar cell upon gelification. The xerogel thin films obtained upon complete dehydration maintained the gel supramolecular order and can be used as a precursor for the preparation of nanostructured IrO2 thin films.  相似文献   
7.
A series of multifunctional platinum(II) bipyridine complexes were designed, synthesized, and characterized by (1)H NMR, fast atom bombardment mass spectrometry (FAB-MS), and elemental analysis. Their electrochemical and photophysical properties were investigated. The photochromic properties of the spironaphthoxazine-containing complexes were also studied. Some of these complexes were shown to be capable of forming stable thermoreversible metallogels in organic solvents. In contrast to typical thermotropic organogels and metallogels, one of the complexes could form metallogels in dodecane and is very stable towards external stimuli. The photochromic activation parameters for the bleaching reaction of a representative spironaphthoxazine-containing complex in a dodecane gel were determined through kinetic studies at various temperatures. Lamellar liquid-crystalline behavior was also observed in one of the complexes, and the liquid-crystalline properties were studied by thermogravimetry analysis (TGA), polarized optical microscopy (POM), differential scanning calorimetry (DSC), variable-temperature X-ray diffraction (XRD), and variable-temperature infrared (IR) spectroscopy.  相似文献   
8.
Eu(III), the last piece in the puzzle: Europium-induced self-assembly of ligands having a C(3)-symmetrical benzene-1,3,5-tricarboxamide core results in the formation of luminescent gels. Supramolecular polymers are formed through hydrogen bonding between the ligands. The polymers are then brought together into the gel assembly through the coordination of terpyridine ends by Eu(III) ions (blue dashed arrow: distance between two ligands in the strand direction).  相似文献   
9.
Oxalic acid has been proven to be the lowest molecular weight organic ligand able to form robust supramolecular metallogel networks in the presence of metal salts. In particular, two novel multifunctional metallogels were readily prepared at room temperature by simple mixing of stock solutions of CuII acetate monohydrate or CuII perchlorate hexahydrate and oxalic acid dihydrate. Formation of different polymorphs and unprecedented proton conduction under anhydrous conditions were also demonstrated with some of these materials.  相似文献   
10.
A structural rationale was adopted to design a series of metallogels from a newly synthesized urea‐functionalized dicarboxylate ligand, namely, 5‐[3‐(pyridin‐3‐yl)ureido]isophthalic acid ( PUIA ), that produces metallogels upon reaction with various metal salts (CuII, ZnII, CoII, CdII, and NiII salts) at room temperature. The gels were characterized by dynamic rheology and transmission electron microscopy (TEM). The existence of a coordination bond in the gel state was probed by FTIR and 1H NMR spectroscopy in a ZnII metallogel (i.e., MG2 ). Single crystals isolated from the reaction mixture of PUIA and CoII or CdII salts characterized by X‐ray diffraction revealed lattice inclusion of solvent molecules, which was in agreement with the hypothesis based on which the metallogels were designed. MG2 displayed anti‐inflammatory response (prostaglandin E2 assay) in the macrophage cell line (RAW 264.7) and anticancer properties (cell migration assay) on a highly aggressive human breast cancer cell line (MDA‐MB‐231). The MG2 metallogel matrix could also be used to load and release (pH responsive) the anticancer drug doxorubicin. Fluorescence imaging of MDA‐MB‐231 cells treated with MG2 revealed that it was successfully internalized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号