首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1111篇
  免费   113篇
  国内免费   105篇
化学   1109篇
晶体学   2篇
力学   2篇
综合类   15篇
数学   14篇
物理学   187篇
  2024年   2篇
  2023年   22篇
  2022年   95篇
  2021年   118篇
  2020年   71篇
  2019年   62篇
  2018年   44篇
  2017年   48篇
  2016年   56篇
  2015年   54篇
  2014年   42篇
  2013年   127篇
  2012年   44篇
  2011年   46篇
  2010年   43篇
  2009年   56篇
  2008年   30篇
  2007年   48篇
  2006年   44篇
  2005年   56篇
  2004年   30篇
  2003年   32篇
  2002年   21篇
  2001年   13篇
  2000年   11篇
  1999年   11篇
  1998年   13篇
  1997年   16篇
  1996年   12篇
  1995年   14篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   6篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有1329条查询结果,搜索用时 15 毫秒
1.
Mass spectrometry (MS) driven metabolomics is a frequently used tool in various areas of life sciences; however, the analysis of polar metabolites is less commonly included. In general, metabolomic analyses lead to the detection of the total amount of all covered metabolites. This is currently a major limitation with respect to metabolites showing high turnover rates, but no changes in their concentration. Such metabolites and pathways could be crucial metabolic nodes (e.g., potential drug targets in cancer metabolism). A stable-isotope tracing capillary electrophoresis–mass spectrometry (CE-MS) metabolomic approach was developed to cover both polar metabolites and isotopologues in a non-targeted way. An in-house developed software enables high throughput processing of complex multidimensional data. The practicability is demonstrated analyzing [U-13C]-glucose exposed prostate cancer and non-cancer cells. This CE-MS-driven analytical strategy complements polar metabolite profiles through isotopologue labeling patterns, thereby improving not only the metabolomic coverage, but also the understanding of metabolism.  相似文献   
2.
3.
光照和氮素对外来植物凤眼莲生长和生理特性的影响   总被引:1,自引:0,他引:1  
通过研究不同光照和氮素营养处理的外来植物凤眼莲的生长、生物量分配、硝酸还原酶活性、游离氨基酸以及可溶性蛋白质含量变化,探讨其对环境适应性的生理学机制。凤眼莲表现出极强的可塑性,随光照和氮素营养的增加,凤眼莲生长速率明显加快,氮素代谢关键酶硝酸还原酶活性上升。根部吸收的硝酸根离子大部分运输到叶片中还原,氮素同化效率高。氨基酸含量和可溶性蛋白质含量呈现明显的变化,叶片可溶性蛋白质含量与根冠生物量分配显著相关。本研究表明风眼莲对光照和氮素表现出很强的适应性,其快速生长和高可塑性依赖于对环境变化的牛理响廊。  相似文献   
4.
We calculated the intake of each chemical species of dietary arsenic by typical Japanese, and determined urinary and blood levels of each chemical species of arsenic. The mean total arsenic intake by 35 volunteers was 195±235 (15.8-1039) μg As day?1, composed of 76% trimethylated arsenic (TMA), 17.3% inorganic arsenic (Asi), 5.8% dimethylated arsenic (DMA), and 0.8% monomethylated arsenic (MA): the intake of TMA was the largest of all the measured species. Intake of Asi characteristically and invariably occurred in each meal. Of the intake of Asi, 45-75% was methylated in vivo to form MA and DMA, and excreted in these forms into urine. The mean measured urinary total arsenic level in 56 healthy volunteers was 129±92.0 μg As dm?3, composed of 64.6% TMA, 26.7% DMA, 6.7% Asi and 2.2% MA. The mean blood total arsenic level in the 56 volunteers was 0.73±0.57 μg dl?1, composed of 73% TMA, 14% DMA and 9.6% Asi. The urinary TMA levels proved to be significantly correlated with the whole-blood TMA levels (r = 0.376; P<0.01).  相似文献   
5.
The toxicity of inorganic trivalent arsenic for living organisms is reduced by in vivo methylation of the element. In man, this biotransformation leads to the synthesis of monomethylarsonic (MMA) and dimethylarsinic (DMA) acids, which are efficiently eliminated in urine along with the unchanged form (Asi). In order to document the methylation process in humans, the kinetics of Asi, MMA and DMA elimination were studied in volunteers given a single dose of one of these three arsenicals or repeated doses of Asi. The arsenic methylation efficiency was also assessed in subjects acutely intoxicated with arsenic trioxide (As2O3) and in patients with liver diseases. Several observations in humans can be explained by the properties of the enzymic systems involved in the methylation process which we have characterized in vitro and in vivo in rats as follows: (1) production of Asi metabolites is catalyzed by an enzymic system whose activity is highest in liver cytosol; (2) different enzymic activities, using the same methyl group donor (S-adenosylmethionine), lead to the production of mono- and di-methylated derivatives which are excreted in urine as MMA and DMA; (3) dimethylating activity is highly sensitive to inhibition by excess of inorganic arsenic; (4) reduced glutathione concentration in liver moderates the arsenic methylation process through several mechanisms, e.g. stimulation of the first methylation reaction leading to MMA, facilitation of Asi uptake by hepatocytes, stimulation of the biliary excretion of the element, reduction of pentavalent forms before methylation, and protection of a reducing environment in the cells necessary to maintain the activity of the enzymic systems.  相似文献   
6.
7.
This study attempts to identify the degradative process which folic acid undergoes in the solid-state under thermal stress. In order to facilitate the process, the various pieces of the chemical structure, namely, p-amino benzoic acid, pterin and glutamic acid as both its d- and l-isomers were investigated as separate entities. These structured solid-state pieces were then compared to the composite solid state folic acid degradative curves in order to identify the peaks seen and provide direction for the interpolation of the degradative mechanism. It was observed that none of the structural pieces could be superimposed as assumed earlier and hence an attempt was made to identify the decomposition products using various analytical techniques such as infrared spectroscopy, mass spectroscopy and X-ray diffraction which suggested that the glutamic acid fragment is lost first as evidenced by acid loss and amide enhancement in the IR spectra. The vitamin was ultimately degrading to carbon fragments and that further identification was not necessary. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
8.
Pichia stipitis CBS 6054 will grow on d-xylose, d-arabinose, and l-arabinose. d-Xylose and l-arabinose are abundant in seed hulls of maize, and their utilization is important in processing grain residues. To elucidate the degradation pathway for l-arabinose, we obtained a mutant, FPL-MY30, that was unable to grow on d-xylose and l-arabinose but that could grow on d-arabinitol. Activity assays of oxidoreductase and pentulokinase enzymes involved in d-xylose, d-arabinose, and l-arabinose pathways indicated that FPL-MY30 is deficient in d-xylitol dehydrogenase (D-XDH), d- and l-arabinitol dehydrogenases, and d-ribitol dehydrogenase. Transforming FPL-MY30 with a gene for xylitol dehydrogenase (PsXYL2), which was cloned from CBS 6054 (Gen Bank AF127801), restored the D-XDH activity and the capacity for FPL-MY30 to grow on l-arabinose. This suggested that FPL-MY30 is critically deficient in XYL2 and that the d-xylose and l-arabinose metabolic pathways have xylitolas a common intermediate. The capacity for FPL-MY30 to grow on d-arabinitol could proceed through d-ribulose.  相似文献   
9.
Summary. In contrast to eukaryotic cells certain eubacterial strains have acquired the ability to utilize L-carnitine (R-(–)-3-hydroxy-4-(trimethylamino)butyrate) as sole source of energy, carbon and nitrogen. The first step of the L-carnitine degradation to glycine betaine is catalysed by L-carnitine dehydrogenase (L-CDH, EC 1.1.1.108) and results in the formation of the dehydrocarnitine. During the oxidation of L-carnitine a simultaneous conversion of the cofactor NAD+ to NADH takes place. This catabolic reaction has always been of keen interest, because it can be exploited for spectroscopic L-carnitine determination in biological fluids – a quantification method, which is developed in our lab – as well as L-carnitine production.Based on a cloned L-CDH sequence an expedition through the currently available prokaryotic genomic sequence space began to mine relevant information about bacterial L-carnitine metabolism hidden in the enormous amount of data stored in public sequence databases. Thus by means of homology-based and context-based protein function prediction is revealed that L-CDH exists in certain eubacterial genomes either as a protein of approximately 35 kDa or as a homologous fusion protein of approximately 54 kDa with an additional putative domain, which is predicted to possess a thioesterase activity. These two variants of the enzyme are found on one hand in the genome sequence of bacterial species, which were previously reported to decompose L-carnitine, and on the other hand in gram-positive bacteria, which were not known to express L-CDH. Furthermore we could not only discover that L-CDH is located in a conserved genetic entity, which genes are very likely involved in this L-carnitine catabolic pathway, but also pinpoint the exact genomic sequence position of several other enzymes, which play an essential role in the bacterial metabolism of L-carnitine precursors.  相似文献   
10.
Two bis(bipyridine) polymeric metal nitrate complexes with 4,4’-bipyridine of simple formula like [M(bipy)2](NO3)2⋅xH2O (where M=Co, Ni and Cu; x=4, 2 and 0, respectively) have been prepared and characterized. Their thermal decomposition has been undertaken using simultaneous TG-DTG-DTA and DSC in nitrogen atmosphere and non-isothermal TG in air atmosphere. Isothermal TG has been performed at decomposition temperature range of the complexes to evaluate the kinetics of decomposition by applying model-fitting as well as isoconversional method. Possible mechanistic pathways have also been proposed for the thermolysis. Ignition delay measurements have been carried out to investigate the response of these complexes under the condition of rapid heating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号