首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
化学   44篇
物理学   3篇
  2023年   3篇
  2022年   6篇
  2021年   11篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  1996年   1篇
  1991年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
We previously reported that splenic extract from lipopolysaccharide (LPS)‐challenged guinea pigs inhibits the exaggerated febrile response of splenectomized guinea pigs, suggesting that the spleen generates an inhibitory factor. Earlier results indicate that the factor is a lipid. In an effort to identify this factor, lipid fractions, isolated from splenic extracts of control and LPS‐challenged guinea pigs, were analyzed with emphasis on identifying and quantifying prostanoids, which according to current knowledge are the likely bioactive factors. Prostaglandins have been extensively implicated in central and peripheral thermoregulation, and thus these lipids were targeted for characterization in the spleen. Analysis was done on the splenic extracts using solid‐phase extraction, analytical and preparative thin‐layer chromatography (TLC) and high‐performance liquid chromatography–mass spectrometry (HPLC‐MS/MS). Four prostaglandins (PGs, 6‐keto‐PGF1α, PGF2α, PGE2 and PGD2) were identified and quantified. Our data shows that these PG levels are doubled in LPS‐treated guinea pig spleen compared with the control group. The methods used in this investigation to characterize PG in the spleen offer significant advantages over immunoassays previously used to identify and quantify PG in the spleen and other biological tissues. These methods will be utilized in further research needed to definitively characterize the role of splenic‐derived PG in modulation of the febrile response induced by LPS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
2.
Dysfunction of the blood–brain barrier (BBB) is involved in the pathogenesis of many cerebral diseases. Oxidative stress and inflammation are contributing factors for BBB injury. Piceatannol, a natural ingredient found in various plants, such as grapes, white tea, and passion fruit, plays an important role in antioxidant and anti-inflammatory responses. In this study, we examined the protective effects of piceatannol on lipopolysaccharide (LPS) insult in mouse brain endothelial cell line (bEnd.3) cells and the underlying mechanisms. The results showed that piceatannol mitigated the upregulated expression of adhesion molecules (ICAM-1 and VCAM-1) and iNOS in LPS-treated bEnd.3 cells. Moreover, piceatannol prevented the generation of reactive oxygen species in bEnd.3 cells stimulated with LPS. Mechanism investigations suggested that piceatannol inhibited NF-κB and MAPK activation. Taken together, these observations suggest that piceatannol reduces inflammation and oxidative stress through inactivating the NF-κB and MAPK signaling pathways on cerebral endothelial cells in vitro.  相似文献   
3.
A ternary complex comprising plasmid DNA, lipopolysaccharide‐binding peptide (LBP), and deoxycholic acid‐conjugated polyethylenimine (PEI‐DA) is prepared for combinational therapy of acute lung injury (ALI). The LBP is designed as an anti‐inflammatory peptide based on the lipopolysaccharide (LPS)‐binding domain of HMGB‐1. In vitro cytokine assays show that LBP reduces levels of proinflammatory cytokines by inhibiting LPS. PEI‐DA is synthesized as the gene carrier by conjugation of deoxycholic acid to low‐molecular weight polyethylenimine (2 kDa, PEI2k). PEI‐DA has higher transfection efficiency than high‐molecular weight polyethylenimine (25 kDa, PEI25k). The ternary complex of an HO‐1 plasmid (pHO‐1), PEI‐DA, and LBP is prepared as a combinational system to deliver the therapeutic gene and peptide. The transfection efficiency of the ternary complex is higher than that of the pHO‐1/PEI‐DA binary complex. The ternary complex also reduces TNF‐α secretion in LPS‐activated Raw264.7 macrophage cells. Administration of the ternary complex into the lungs of an animal ALI model by intratracheal injection induces HO‐1 expression and reduces levels of proinflammatory cytokines more efficiently than the pHO‐1/PEI‐DA binary complex or LBP alone. In addition, the ternary complex reduces inflammation in the lungs. Therefore, the pHO‐1/PEI‐DA/LBP ternary complex may be an effective treatment for ALI.

  相似文献   

4.
The structural variations in the rough-type endotoxins [lipopolysaccharides (LPSs)] of Shigella sonnei mutant strains (S. sonnei phase II-4303, R41, 562H and 4350) were investigated by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem MS. A series of S. sonnei mutants had previously been the subject of analytical studies on the biosynthesis of heptose components in the core oligosaccharide region of LPSs. This study gives a complete overview on the structures of the full core and lipid A of S. sonnei mutant strains by MS. We found that the LPSs of the isogenic rough mutants were formed in a step-like manner containing 0:1:2:3 heptose in the deep core region of 4350, 562H, R41 and 4303, respectively, and the longest LPS from the mutant S. sonnei 4303 contained also five hexoses. The structural variations in the lipid A moiety and in the oligosaccharide part of the intact LPS were followed by MALDI-TOF-MS/MS. For the dissolution and the ionization of the samples, 2,5-dihydroxybenzoic acid in citric acid solution was applied as matrix. The detailed evaluation of the mass spectra indicates heterogeneity in the lipid part due to the differences in the phosphate and fatty acid composition.  相似文献   
5.
In many Gram‐negative bacteria, lipopolysaccharide (LPS) and its lipid A moiety are pivotal for bacterial survival. Depending on its structure, lipid A carries the toxic properties of the LPS and acts as a potent elicitor of the host innate immune system via the Toll‐like receptor 4/myeloid differentiation factor 2 (TLR4/MD‐2) receptor complex. It often causes a wide variety of biological effects ranging from a remarkable enhancement of the resistance to the infection to an uncontrolled and massive immune response resulting in sepsis and septic shock. Since the bioactivity of lipid A is strongly influenced by its primary structure, a broad range of chemical syntheses of lipid A derivatives have made an enormous contribution to the characterization of lipid A bioactivity, providing novel pharmacological targets for the development of new biomedical therapies. Here, we describe and discuss the chemical aspects regarding lipid A and its role in innate immunity, from the (bio)synthesis, isolation and characterization to the molecular recognition at the atomic level.  相似文献   
6.
Chloranthus oldhamii Solms (CO) is a folk medicine for treating infection and arthritis pain but its pharmacological activity and bioactive compounds remain mostly uncharacterized. In this study, the anti-inflammatory compounds of C. oldhamii were identified using an LPS-stimulated, NF-κB-responsive RAW 264.7 macrophage reporter line. Three diterpenoid compounds, 3α-hydroxy-ent-abieta-8,11,13-triene (CO-9), 3α, 7β-dihydroxy-ent-abieta-8,11,13-triene (CO-10), and decandrin B (CO-15) were found to inhibit NF-κB activity at nontoxic concentrations. Moreover, CO-9 and CO-10 suppressed the expression of IL-6 and TNF-α in LPS-stimulated RAW 264.7 cells. The inhibitory effect of CO-9 on TNF-α and IL-6 expression was further demonstrated using LPS-treated bone marrow-derived macrophages. Furthermore, CO-9, CO-10, and CO-15 suppressed LPS-triggered COX-2 expression and downstream PGE2 production in RAW 264.7 cells. CO-9 and CO-10 also reduced LPS-triggered iNOS expression and nitrogen oxide production in RAW 264.7 cells. The anti-inflammatory mechanism of the most effective compound, CO-9, was further investigated. CO-9 attenuated LPS-induced NF-κB activation by reducing the phosphorylation of IKKα/β (Ser176/180), IκBα (Ser32), and p65 (Ser534). Conversely, CO-9 did not affect the LPS-induced activation of MAPK signaling pathways. In summary, this study revealed new anti-inflammatory diterpenoid compounds from C. oldhamii and demonstrated that the IKK-mediated NK-κB pathway is the major target of these compounds.  相似文献   
7.
Endometritis is the inflammatory response of the endometrial lining of the uterus and is associated with low conception rates, early embryonic mortality, and prolonged inter-calving intervals, and thus poses huge economic losses to the dairy industry worldwide. Ginsenoside Rb1 (GnRb1) is a natural compound obtained from the roots of Panax ginseng, having several pharmacological and biological properties. However, the anti-inflammatory properties of GnRb1 in lipopolysaccharide (LPS)-challenged endometritis through the TLR4-mediated NF-κB signaling pathway has not yet been researched. This study was planned to evaluate the mechanisms of how GnRb1 rescues LPS-induced endometritis. In the present research, histopathological findings revealed that GnRb1 ameliorated LPS-triggered uterine injury. The ELISA and RT-qPCR assay findings indicated that GnRb1 suppressed the expression level of pro-inflammatory molecules (TNF-α, IL-1β and IL-6) and boosted the level of anti-inflammatory (IL-10) cytokine. Furthermore, the molecular study suggested that GnRb1 attenuated TLR4-mediated NF-κB signaling. The results demonstrated the therapeutic efficacy of GnRb1 in the mouse model of LPS-triggered endometritis via the inhibition of the TLR4-associated NF-κB pathway. Taken together, this study provides a baseline for the protective effect of GnRb1 to treat endometritis in both humans and animals.  相似文献   
8.
Sepsis is the major cause of acute kidney injury (AKI) in severely ill patients, but only limited therapeutic options are available. During sepsis, lipopolysaccharide (LPS), an endotoxin derived from bacteria, activates signaling cascades involved in inflammatory responses and tissue injury. Apamin is a component of bee venom and has been shown to exert antioxidative, antiapoptotic, and anti-inflammatory activities. However, the effect of apamin on LPS-induced AKI has not been elucidated. Here, we show that apamin treatment significantly ameliorated renal dysfunction and histological injury, especially tubular injury, in LPS-injected mice. Apamin also suppressed LPS-induced oxidative stress through modulating the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and heme oxygenase-1. Moreover, tubular cell apoptosis with caspase-3 activation in LPS-injected mice was significantly attenuated by apamin. Apamin also inhibited cytokine production and immune cell accumulation, suppressed toll-like receptor 4 pathway, and downregulated vascular adhesion molecules. Taken together, these results suggest that apamin ameliorates LPS-induced renal injury through inhibiting oxidative stress, apoptosis of tubular epithelial cells, and inflammation. Apamin might be a potential therapeutic option for septic AKI.  相似文献   
9.
Syzygium brachythyrsum is an important folk medicinal and edible plant in Yunnan ethnic minority community of China, however, little is known about the chemical and bio-active properties. The present study is aimed to identify the bioactive constituents with antioxidant and anti-inflammatory properties by an integrating approach. First, two new bergenin derivatives, brachythol A (1) and brachythol B (2), together with eleven known phenolic compounds (3–13) were isolated from bioactive fractions by phytochemical method. Among these isolated chemicals, five bergenin derivatives, along with 3 phenolics were found in Syzygium genus for the first time. Then, a further chemical investigation based on ultra-high-performance liquid chromatography-Q Exactive Orbitrap mass spectrometry resulted in a total of 107 compounds characterized in the bio-active fractions, including 50 bergenin derivatives, among which 14 bergenin derivatives and 14 phenolics were potential new natural chemicals. Most of the isolated compounds showed obvious antioxidant activities, while compounds 11, 12, and 13 had favorable performance. Eight compounds (2–5, 7, and 9–11) showed good inhibitory activity on nitric oxide (NO) production in macrophage RAW 264.7 cells. The structure–activity correlation analysis indicated that the antioxidation and anti-inflammatory activities enhanced when bergenin was esterified with gallic acid, caffeic acid or ferulic acid. This is the first report of bergenins in Syzygium genus and the richness in new bio-active bergenins and gallic acid derivatives indicated that Syzygium brachythyrsum is a promising functional and medicinal resource.  相似文献   
10.
Chemistry-based investigation is reviewed which led to identification of the active entities responsible for the immunostimulating potencies of peptidoglycan and lipopolysaccharide. Though these glycoconjugates which ubiquitously occur in wide range of bacteria as the essential components of their cell envelopes have long been known to enhance the immunological responses of higher animals, neither the precise chemical structures required nor the mechanism of their action remained to be elucidated until early 1970s. Chemical synthesis of partial structures of peptidoglycan proved N-acetylmuramyl-L-alanyl-D-isoglutamine to be the minimum structure responsible for the activity and led to later identification of its receptor protein Nod2 present in animal cells. Another active partial structure of peptidoglycan, γ-D-glutamyl-meso-diaminopimelic acid, and its receptor Nod1 were also identified as well. With regard to lipopolysaccharide, its glycolipid part named lipid A was purified and the structure studied. Chemically synthesized lipid A according to the newly elucidated structure exhibited full activity described for lipopolysaccharide known as endotoxin. Synthetic homogeneous lipid A and its structural analogues and labeled derivatives enabled precise studies of their interaction with receptor proteins and the mechanism of their action. Chemical synthesis of homogeneous partial structures of peptidoglycan and lipopolysaccharide gave unequivocal evidences for the concept that definite small molecular parts of these complex macromolecular bacterial glycoconjugates are specifically recognized by their respective receptors and trigger our defense system now widely recognized as innate immunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号