首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   6篇
  国内免费   3篇
化学   59篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   10篇
  2004年   7篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
Acylation of meso-2,3-dimethylbutane-1,4-diol with vinyl acetate in the presence of porcine pancreatic lipase (PPL) leads to the dextrorotatory monoacetate of the above diol with enatiomeric excess (ee) 58—64%. Absolute configuration of this scalemic specimen was determined by its sequential transformation to levorotatory lasiol, a metabolite of the Lasius ants. Partial hydrolysis of the corresponding meso-diacetate, mediated by PPL or by the Pseudomonas sp. lipase affords the monoacetate of opposite configuration with ee 72—86%, a formal intermediate in the synthesis of (3S,4R)-faranal. Other microbial lipases used are distinctive in low chemoselectivity.  相似文献   
2.
In the present investigation, we studied the enzymatic synthesis of monoacylglycerols (MAG) and diacylglycerols (DAG) via the esterification of saturated fatty acids (stearic, palmitic and an industrial residue containing 87% palmitic acid) and glycerol in a solvent‐free system. Three immobilized lipases (Lipozyme RM IM, Lipozyme TL IM and Novozym 435) and different reaction conditions were evaluated. Under the optimal reaction conditions, esterifications catalyzed by Lipozyme RM IM resulted in a mixture of MAG and DAG at high conversion rates for all of the substrates. In addition, except for the reaction of industrial residue at atmospheric pressure, all of these products met the World Health Organization and European Union directives for acylglycerol mixtures for use in food applications. The products were quantified by 13C NMR, with the aid of an external reference signal which was generated from a sealed coaxial tube filled with acetonitrile‐d3. After calibrating the area of this signal using the classical external reference method, the same coaxial tube was used repeatedly to quantify the reaction products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
3.
《合成通讯》2013,43(15):2107-2114
Abstract

This work describes the lipase‐mediated epoxidation of cyclohexene. Lipases were used to generate peroxyoctanoic acid directly from octanoic acid and hydrogen peroxide and applied in situ to obtain cyclohexene oxide. Various parameters, which could affect this reaction, were studied such as lipases from different sources, organic solvents, temperature and acyl donor concentrations. Highest conversions to cyclohexene epoxide were achieved using a two‐phase system of toluene or xylene/water with ROL (Amano F‐Ap15 free Rhizopus orizae lipase) (84 and 80%) or CALB (Novozymes 435®‐immobilized Candida antarctica lipase type B) (>9 and 84%) as biocatalysts. Using PSL (Amano PS‐free Pseudomonas sp) the conversions were in the range of 12–53%, but an improvement was obtained by the use of the ionic liquid 1‐butyl‐3‐methylimidazolium tetrafluoroborate (20 to 41% in water/methyl dichloride).  相似文献   
4.
5.
6.
7.
Acetylation of (±)-1-phenylnon-2-yn-1-ol, (±)-1-phenylhept-1-yn-3-ol, and (±)-1-phenylundec-4-yn-3-ol ((±)-5) in the presence of lipase from Candida cylindracea (CCL) proceeds slowly to give products with ee 20%. The acetates of these alcohols are hydrolyzed in the presence of porcine pancreatic lipase (PPL) equally unsatisfactorily. The (6-arene)tricarbonylchromium complex of alcohol (±)-5 is acetylated in the presence of CCL up to 22% conversion to give (R)-acetate whose oxidative decomplexation followed by saponification results in alcohol (R)-(–)-5 with ee 95%. The configuration of alcohols (–)-5 and (+)-5 was determined by NMR spectroscopy of their esters with (R)- and (S)-Mosher"s acids.  相似文献   
8.
A key bottleneck in the profiling of lipids is the multistep derivatization required prior to gas chromatography (GC) analysis. A single in-vial lipid derivatization and analysis may significantly minimize sample loss and improve analytical sensitivity. A cotton fiber-supported poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) polymer microbrush microreactor loaded with Candida antarctica lipase B was developed for the facile conversion of triacylglycerols into fatty acid ethyl ester derivatives for gas chromatograph–mass spectrometry (GC–MS) analysis. The polymer microbrush microreactor was fabricated in effort to provide efficient, simplified, cost effective, and high-throughput GC–MS determination of triacylglycerols. The polymer microbrush microreactor was used as an in-vial triacylglycerol transesterification platform, with economical sample consumption of less than or equal to 100?µL and significant reduction of reagents. To evaluate the polymer microbrush microreactor performance for lipids, a triolein standard and camelina oil triacylglycerols were quantitatively transformed into ethyl oleate and fatty acid ethyl esters, respectively, following a 3?h reaction time. The lipase-loaded cotton fiber-supported poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) polymer microbrush microreactors were reusable for up to five times for quantitative transesterification with minimal loss of lipase activity.  相似文献   
9.
10.
To determine the crucial role of surfactant head-group size in micellar enzymology, the activity of Chromobacterium Viscosum (CV) lipase was estimated in cationic water-in-oil (w/o) microemulsions of three different series of surfactants with varied head-group size and hydrophilicity. The different series were prepared by subsequent replacement of three methyl groups of cetyltrimethylammonium bromide (CTAB) with hydroxyethyl (1-3, series I), methoxyethyl (4-6, series II), and n-propyl (7-9, series III) groups. The hydrophilicity at the polar head was gradually reduced from series I to series III. Interestingly, the lipase activity was found to be markedly higher for series II surfactants relative to their more hydrophilic analogues in series I. Moreover, the activity remained almost comparable for complementary analogues of both series I and III, though the hydrophilicity was drastically different. Noticeably, the head-group area per surfactant is almost similar for comparable surfactants of both series I and III, but distinctly higher in case of series II surfactants. Thus the lipase activity was largely regulated by the surfactant head-group size, which plays the dominant role over the hydrophilicity. The increase in head-group size presumably allows the enzyme to attain a flexible conformation as well as increase in the local concentration of enzyme and substrate, leading to the higher efficiency of lipase. The lipase showed its best activity in the microemulsion of 6 probably because of its highest head-group size. Furthermore, the observed activity in 6 is 2-3-fold and 8-fold higher than sodium bis(2-ethyl-1-hexyl)sulfosuccinate (AOT) and CTAB-based microemulsions, respectively, and in fact highest ever in any w/o microemulsions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号