首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   5篇
  国内免费   9篇
化学   56篇
物理学   1篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2018年   3篇
  2016年   4篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
It is commonly observed that the rate of enzymatic hydrolysis of solid cellulose substrates declines markedly with time. In this work the mechanism behind the rate reduction was investigated using two dominant cellulases of Trichoderma reesei: exoglucanase Cel7A (formerly known as CBHI) and endoglucanase Cel7B (formerly EGI). Hydrolysis of steam-pretreated spruce (SPS) was performed with Cel7A and Cel7B alone, and in reconstituted mixtures. Throughout the 48-h hydrolysis, soluble products, hydrolysis rates, and enzyme adsorption to the substrate were measured. The hydrolysis rate for both enzymes decreases rapidly with hydrolysis time. Both enzymes adsorbed rapidly to the substrate during hydrolysis. Cel7A and Cel7B cooperate synergistically, and synergism was approximately constant during the SPS hydrolysis. Thermal instability of the enzymes and product inhibition was not the main cause of reduced hydrolysis rates. Adding fresh substrate to substrate previously hydrolyzed for 24 h with Cel7A slightly increased the hydrolysis of SPS; however, the rate increased even more by adding fresh Cel7A. This suggests that enzymes become inactivated while adsorbed to the substrate and that unproductive binding is the main cause of hydrolysis rate reduction. The strongest increase in hydrolysis rate was achieved by adding Cel7B. An improved model is proposed that extends the standard endo-exo synergy model and explains the rapid decrease in hydrolysis rate. It appears that the processive action of Cel7A becomes hindered by obstacles in the lignocellulose substrate. Obstacles created by disordered cellulose chains can be removed by the endo activity of Cel7B, which explains some of the observed synergism between Cel7A and Cel7B. The improved model is supported by adsorption studies during hydrolysis.  相似文献   
2.
可再生生物质资源的能源化利用能有效缓解能源短缺和环境恶化的双重压力。木质纤维素类生物质原料通过催化转化途径可以转化成为用途广泛的平台化合物,如呋喃类化合物、多元醇和有机酸及其酯类衍生物等。以这些平台化合物为原料,通过基元反应的转化可以制备高附加值的生物质基液体燃料。基于上述背景,本文概述了国内外木质纤维素通过不同催化转化途径制备各种新能源平台化合物的研究进展。目前木质纤维素制备新能源平台化合物的可行途径主要包括液体酸催化、固体酸催化、离子液体催化和多功能材料催化。在介绍这些催化途径的同时,重点讨论了所使用的催化剂,分析了仍然存在的问题和可能的解决措施,同时对今后该领域的研究前景进行了展望。  相似文献   
3.
Alkaline detoxification strongly improves the fermentability of dilute-acid hydrolysates in the production of bioethanol from lignocellulose with Saccharomyces cerevisiae. New experiments were performed with NH4OH and NaOH to define optimal conditions for detoxification and make a comparison with Ca(OH)2 treatment feasible. As too harsh conditions lead to sugar degradation, the detoxification treatments were evaluated through the balanced ethanol yield, which takes both the ethanol production and the loss of fermentable sugars into account. The optimization treatments were performed as factorial experiments with 3-h duration and varying pH and temperature. Optimal conditions were found roughly in an area around pH 9.0/60°C for NH4OH treatment and in a narrow area stretching from pH 9.0/80°C to pH 12.0/30°C for NaOH treatment. By optimizing treatment with NH4OH, NaOH, and Ca(OH)2, it was possible to find conditions that resulted in a fermentability that was equal or better than that of a reference fermentation of a synthetic sugar solution without inhibitors, regardless of the type of alkali used. The considerable difference in the amount of precipitate generated after treatment with different types of alkali appears critical for industrial implementation.  相似文献   
4.
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) was previously used to characterize lignocellulosic materials, including woody biomass. ToF‐SIMS can acquire both rapid spectral and spatial information about a sample's surface composition. In the present study, ToF‐SIMS was used to characterize the cell walls of stem tissue from the plant model organism, Arabidopsis thaliana. Using principal component analyses, ToF‐SIMS spectra from A. thaliana wild‐type (Col‐0), cellulose mutant (irx3), and lignin mutant (fah1) stem tissues were distinguished using ToF‐SIMS peaks annotated for wood‐derived lignocellulose, where spectra from the irx3 and fah1 were characterized by comparatively low polysaccharide and syringyl lignin content, respectively. Spatial analyses using ToF‐SIMS imaging furthermore differentiated interfascicular fiber and xylem vessels based on differences in the lignin content of corresponding cell walls. These new data support the applicability of ToF‐SIMS peak annotations based on woody biomass for herbaceous plants, including model plant systems like arabidopsis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
6.
7.
Using bioconversion and simultaneous value-added product generation requires purification of the gaseous and the liquid streams before, during, and after the bioconversion process. The effect of diversified process parameters on the efficiency of biohydrogen generation via biological processes is a broad object of research. Biomass-based raw materials are often applied in investigations regarding biohydrogen generation using dark fermentation and photo fermentation microorganisms. The literature lacks information regarding model mixtures of lignocellulose and starch-based biomass, while the research is carried out based on a single type of raw material. The utilization of lignocellulosic and starch biomasses as the substrates for bioconversion processes requires the decomposition of lignocellulosic polymers into hexoses and pentoses. Among the components of lignocelluloses, mainly lignin is responsible for biomass recalcitrance. The natural carbohydrate-lignin shields must be disrupted to enable lignin removal before biomass hydrolysis and fermentation. The matrix of chemical compounds resulting from this kind of pretreatment may significantly affect the efficiency of biotransformation processes. Therefore, the actual state of knowledge on the factors affecting the culture of dark fermentation and photo fermentation microorganisms and their adaptation to fermentation of hydrolysates obtained from biomass requires to be monitored and a state of the art regarding this topic shall become a contribution to the field of bioconversion processes and the management of liquid streams after fermentation. The future research direction should be recognized as striving to simplification of the procedure, applying the assumptions of the circular economy and the responsible generation of liquid and gas streams that can be used and purified without large energy expenditure. The optimization of pre-treatment steps is crucial for the latter stages of the procedure.  相似文献   
8.
Experimental results are presented for continuous conversion of pretreated hardwood flour to ethanol. A simultaneous saccharification and fermentation (SSF) system comprised ofTrichoderma reesei cellulase supplemented with additional β-glucosidase and fermentation bySaccharomyces cerevisiae was used for most experiments, with data also presented for a direct microbial conversion (DMC) system comprised ofClostridium thermocellum. Using a batch SSF system, dilute acid pretreatment of mixed hardwood at short residence time(10 s, 220°C, 1% H2SO4) was compared to poplar wood pretreated at longer residence time (20 min, 160°C, 0.45% H2SO4). The short residence time pretreatment resulted in a somewhat (10–20%) more reactive substrate, with the reactivity difference particularly notable at low enzyme loadings and/or low agitation. Based on a preliminary screening, inhibition of SSF by byproducts of short residence time pretreatment was measurable, but minor. Both SSF and DMC were carried out successfully in well-mixed continuous systems, with steady-state data obtained at residence times of 0.58–3 d for SSF as well as 0.5 and 0.75 d for DMC. The SSF system achieved substrate conversions varying from 31% at a 0.58-d residence time to 86% at a 2-d residence time. At comparable substrate concentrations (4–5 g/l) and residence times (0.5–0.58 d), substrate conversion in the DMC system (77%) was significantly higher than that in the SSF system (31%). Our results suggest that the substrate conversion in SSF carried out in CSTR is relatively insensitive to enzyme loading in the range 7–25 U/g cellulose and to substrate concentration in the range of 5–60 g/L cellulose in the feed.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号