首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   10篇
  国内免费   10篇
化学   115篇
力学   2篇
数学   14篇
物理学   30篇
  2024年   2篇
  2023年   8篇
  2022年   7篇
  2021年   11篇
  2020年   10篇
  2019年   14篇
  2018年   4篇
  2017年   11篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   14篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1995年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1971年   1篇
排序方式: 共有161条查询结果,搜索用时 31 毫秒
1.
Refractory wounds have always been an important issue to healthcare systems, whose healing process is always delayed by multiple factors, including bacterial infections, chronic inflammation, and excessive exudates, etc. Employing multifunctional wound dressings is recognized as an effective strategy to deal with refractory wounds, which has yielded promising outcomes in recent years. Among these advanced wound dressings, fibrous dressings have gained growing attention due to their unique merits. Such wound dressings have demonstrated great potential in delivering theranostic agents, such as antibacterial agents, anti-inflammatory drugs, growth factors, and diagnostic probes, etc., for the purposes of accelerating wound healing. This paper reviews the development of multifunctional fibrous dressings and their applications in treating refractory wounds. The construction approaches of novel fibrous dressing with capabilities of antibacterial, anti-inflammation, exudate management and diagnosis were also introduced. Furthermore, the existing problems and challenges are also discussed briefly.  相似文献   
2.
Polyvinyl alcohol (PVA) nanofibers containing Ag nanoparticles were prepared by electrospinning PVA/silver nitrate (AgNO3) aqueous solutions, followed by short heat treatment, and their antimicrobial activity was investigated for wound dressing applications. Since PVA is a water soluble and biocompatible polymer, it is one of the best materials for the preparation of wound dressing nanofibers. After heat treatment at 155 °C for 3 min, the PVA/AgNO3 nanofibers became insoluble, while the Ag+ ions therein were reduced so as to produce a large number of Ag nanoparticles situated preferentially on their surface. The residual Ag+ ions were reduced by subsequent UV irradiation for 3 h. The average diameter of the Ag nanoparticles after the heat treatment was 5.9 nm and this value increased slightly to 6.3 nm after UV irradiation. It was found that most of the Ag+ ions were reduced by the simple heat treatment. The PVA nanofibers containing Ag nanoparticles showed very strong antimicrobial activity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2468–2474, 2006  相似文献   
3.
A novel hemostatic and absorbent wound dressing material compatible with 3D printing is developed to address deficiencies in current wound dressing protocol. The design involves an open celled, microporous hydrogel foam via a high internal phase emulsion (HIPE) template with biocompatible components and tunable hemostatic character by kaolin loading, the viscosity and cure kinetics of which are tailored for 3D printing applications. The use of nontoxic mineral oil organic phase results in cytocompatability with human dermal fibroblasts. Kaolin distribution is shown by X‐ray diffraction and elemental dispersive spectroscopy to be exfoliated and dispersed in the hydrogel dressing. In addition to demonstrating high fluid absorption and noncytotoxicity of relevant cell lines, the high internal phase emulsion polymers (polyHIPEs) also match the hemostatic performance of commercial wound dressing materials. Furthermore, the polyHIPEs display the requisite rheological properties for 3D printing that result in the fabrication of a prototype dressing with hierarchical porosity and a large number of controllable form factors.  相似文献   
4.
Keratin is widely recognized as a high‐quality renewable protein resource for biomedical applications. Despite their extensive existence, keratin resources such as feathers, wool, and hair exhibit high stability and mechanical properties because of their high disulfide bond content. Consequently, keratin extraction is challenging and its application is greatly hindered. In this work, a biological extraction strategy is proposed for the preparation of bioactive keratin and the fabrication of self‐assembled keratin hydrogels (KHs). Based on moderate and controlled hydrolysis by keratinase, keratin with a high molecular weight of approximately 45 and 28 kDa that retain its intrinsic bioactivities is obtained. The keratin products show excellent ability to promote cell growth and migration and are conferred with significant antioxidant ability because of their intrinsically high cysteine content. In addition, without the presence of any cross‐linking agent, the extracted keratin can self‐assemble into injectable hydrogels. The KHs exhibit a porous network structure and 3D culture ability, showing potential in promoting wound healing. This enzyme‐driven keratin extraction strategy opens up a new approach for the preparation of keratin that can self‐assemble into injectable hydrogels for biomedical engineering.  相似文献   
5.
A series of PVA/PVP/clay nanocomposite were prepared by gamma irradiation with different clay contents of (0.15, 0.3, 1, 1.5, 3 and 5 wt%). The gelation content and swelling behavior were investigated. The morphology and structure of PVA/PVP/clay nanocomposite and dispersion of the clay nanoparticles in the polymeric matrix were examined by infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The introduction of clay into polymeric matrix was investigated by X-ray diffraction pattern (XRD) and Transmission electron microscope (TEM). It is observed that, the increase of the clay content causes a decrease in the swelling percent. The thermal stability studies confirmed that the introduction of clay lead to an increase in the thermal stability. The TEM results showed that the clay nanoparticles are interchelated or exfoliated in the polymeric matrix. Some desirable characteristics such as relatively good swelling and excellent barrier capability against microbe penetration suggested that PVA/PVP/clay nanocomposite can be a good candidate as a wound dressing.  相似文献   
6.
Raman and IR spectroscopy were used to investigate the changes induced in yak hair keratin by the straightening treatment based on glyoxylic acid. The amino acidic residues that appeared involved in the reaction with glyoxylic acid were serine and lysine; the involvement of the latter was deduced by the spectroscopic detection of iminic species, resulting from the reaction between the aminic group of lysine and the carbonyl group of glyoxylic acid. The reaction with glyoxylic acid induced conformational rearrangements that mainly involved the fibre bulk rather than the cuticle. Changes in the average tyrosine environment and its hydrogen‐bonding state were detected: at increasing glyoxylic acid incorporation, the tyrosine residues appeared more exposed, probably because of H‐bond interactions with the COOH group. The distribution of the disulfide bridge conformation was also affected, although no cleavage of the S–S bond was detected, in agreement with the shiny and healthy appearance of the fibres. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
Textiles coated with silver nanowires (AgNWs) are effective at suppressing radiative heat loss without sacrificing breathability. Many reports present the applicability of AgNWs as IR-reflective wearable textiles, where such studies partially evaluate the parameters for practical usage for large-scale production. In this study, the effect of the two industrial coating methods and the loading value of AgNWs on the performance of AgNWs-coated fabric (AgNWs-CF) is reported. The AgNWs were synthesized by the polyol process and applied onto the surface of cotton fabric using either dip- or spray-coating methods with variable loading levels of AgNWs. X-ray diffraction, scanning electron microscopy (SEM), infrared (IR) reflectance, water vapor permeability (WVP), and electrical resistance properties were characterized. The results report the successful synthesis of AgNWs with a 30 μm length. The results also show that the spray coating method has a better performance for reflecting the IR radiation to the body, which increases with a greater loading level of the AgNWs. The antibacterial results show a good inhibition zone for cotton fabric coated by both methods, where the spray-coated fabric has a better performance overall. The results also show the coated fabric with AgNWs maintains the level of fabric breathability similar to control samples. AgNWs-CFs have potential utility for cold weather protective clothing in which heat dissipation is attenuated, along with applications such as wound dressing materials that provide antibacterial protection.  相似文献   
8.
Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.  相似文献   
9.
Abstract

Wound healing is a complex process and it involves restoration of damaged skin tissues. Several wound dressings comprising naturally made substances are constantly investigated to assist wound healing. In this research, a new wound dressing based on polyurethane (PU) supplemented with essence of Channa striatus (CS) fish oil was made by electrospinning. Morphological study depicted the reduction in fiber diameter than PU with the addition of fish oil (0.552?±?0.109?μm for 8:1 v/v% and 0.519?±?0.196?μm 7:2 v/v%) than the pristine PU (0.971?±?0.205?µm). Fourier transform infrared spectroscopy (FTIR) analysis revealed the presence of fish oil in the composite as identified through increasing peak intensity. Fish oil resulted in the hydrophilic behavior (88?±?3 (8:1 v/v) and 70?±?6 (7:2 v/v)) as revealed in the contact angle analysis. Thermal gravimetric analysis (TGA) showed the superior thermal behavior of the wound dressing patch compared to the PU. Atomic force microscopy (AFM) analysis insinuated a decrease in the surface roughness of the pristine polyurethane with the added fish oil. Coagulation assays signified the delay in the blood clotting time portraying its anti-thrombogenic behavior. Hemolytic assay revealed the less toxic nature of the developed nanocomposites with the red blood cells (RBC’s) depicting its safety with blood. Hence, polyurethane nanofibers supplemented with fish oil made them as deserving candidates for wound dressing application.  相似文献   
10.
The treatment of chronic wounds represents a major interest for public health both medically and economically. Hence the need for a modern wound dressing that actively promotes the physiological process specific to healing. In this perspective we have studied the development of a new dressing able to offer a serious contribution to the dilemma of the various chronic wounds. A dressing grafted with two natural polysaccharides known for their multiple biological effects, chitosan and a carbohydrate polymer extracted from Commiphora myrrha (CMP). We began by studying the grafting of the two natural biopolymers onto cellulose dressings, via a polyacrylic acid as a crosslinking agent. An optimization study, revealed the different grafting parameters, the polymer concentration as well as the heat-setting time and temperature. After, different characterization techniques were carried out in order to evaluate the effectiveness of our grafting. The swelling test revealed a hydrophilicity enhancement which increased with the degree of grafting, a desired property for effective dressings. Infrared characterization as well as thermogravimetric analysis (TGA and DTA) confirmed the binding mode and the permanence of our grafting. XRD and mechanical characterization showed no change in the crystallinity or in the original mechanical properties of the functionalized dressings. Morphological SEM study, confirmed the presence of our grafting as well as its mode of distribution. Finally, a bacteriological study conducted, showed a clear improvement of the antimicrobial behavior of cellulosic wound dressings functionalized by our combined natural biopolymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号