首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   8篇
  国内免费   19篇
化学   194篇
物理学   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   6篇
  2013年   19篇
  2012年   12篇
  2011年   6篇
  2010年   14篇
  2009年   15篇
  2008年   13篇
  2007年   6篇
  2006年   21篇
  2005年   15篇
  2004年   15篇
  2003年   8篇
  2002年   8篇
  2001年   10篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
排序方式: 共有197条查询结果,搜索用时 500 毫秒
1.
2.
A method was developed for free‐radical polymerization in the confines of a hollow latex particle. Hollow particles were prepared via the dynamic swelling method from polystyrene seed and divinylbenzene and had hollows of 500–1000 nm. So that these hollow poly(divinylbenzene) particles could function as submicrometer reactors, the particles were filled with a monomer (Nisopropylacrylamide) via the dispersion of the dried particles in the molten monomer. The monomer that was not contained in the hollows was removed by washing and gentle abrasion. Free‐radical polymerization was then initiated by γ radiolysis in the solid state. Transmission electron microscopy showed that poly(Nisopropylacrylamide) formed in the hollow interior of the particles, which functioned as submicrometer reactors. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5706–5713, 2004  相似文献   
3.
Well‐defined diblock and triblock copolymers composed of poly(Nisopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of Nisopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   
4.
A series of novel multifunctional hydrogels that combined the merits of both thermoresponsive and biodegradable polymeric materials were designed, synthesized, and characterized. The hydrogels were copolymeric networks composed of Nisopropylacrylamide (NIPAAM) as a thermoresponsive component, poly(L‐lactic acid) (PLLA) as a hydrolytically degradable and hydrophobic component, and dextran as an enzymatically degradable and hydrophilic component. The chemical structures of the hydrogels were characterized by an attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR) technique. The hydrogels were thermoresponsive, showing a lower critical solution temperature (LCST) at approximately 32 °C, and their swelling properties strongly depended on temperature changes, the balance of the hydrophilic/hydrophobic components, and the degradation of the PLLA component. The degradation of the hydrogels caused by hydrolytic cleavage of ester bonds in the PLLA component was faster at 25 °C below the LCST than at 37 °C above the LCST, determined by the ATR–FTIR technique. Due to their multifunctional properties, the designed hydrogels show great potential for biomedical applications, including drug delivery and tissue engineering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5054–5066, 2004  相似文献   
5.
Stimuli‐responsive poly[(Nisopropylacrylamideco‐maleic anhydride)‐g‐poly(ethylene oxide)]/poly(ethylene imine) macrobranched macrocomplexes were synthesized by (1) the radical copolymerization of Nisopropylacrylamide and maleic anhydride with α,α′‐azobisisobutyronitrile as an initiator in 1,4‐dioxane at 65 °C under a nitrogen atmosphere, (2) the polyesterification (grafting) of prepared poly(Nisopropylacrylamideco‐maleic anhydride) containing less than 20 mol % anhydride units with α‐hydroxy‐ω‐methoxy‐poly(ethylene oxide)s having different number‐average molecular weights (Mn = 4000, 10,000, or 20,000), and (3) the incorporation of macrobranched copolymers with poly(ethylene imine) (Mn = 60,000). The composition and structure of the synthesized copolymer systems were determined by Fourier transform infrared, 1H and 13C NMR spectroscopy, and chemical and elemental analyses. The important properties of the copolymer systems (e.g., the viscosity, thermal and pH sensitivities, and lower critical solution temperature behavior) changed with increases in the molecular weight, composition, and length of the macrobranched hydrophobic domains. These copolymers with reactive anhydride and carboxylic groups were used for the stabilization of penicillin G acylase (PGA). The conjugation of the enzyme with the copolymers significantly increased the thermal stability of PGA (three times at 45 °C and two times at 65 °C). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1580–1593, 2003  相似文献   
6.
Anionic polymerization of N‐methoxymethyl‐Nisopropylacrylamide ( 1 ) was carried out with 1,1‐diphenyl‐3‐methylpentyllithium and diphenylmethyllithium, ‐potassium, and ‐cesium in THF at ?78 °C for 2 h in the presence of Et2Zn. The poly( 1 )s were quantitatively obtained and possessed the predicted molecular weights based on the feed molar ratios between monomer to initiators and narrow molecular weight distributions (Mw/Mn = 1.1). The living character of propagating carbanion of poly( 1 ) either at 0 or ?78 °C was confirmed by the quantitative efficiency of the sequential block copolymerization using N,N‐diethylacrylamide as a second monomer. The methoxymethyl group of the resulting poly( 1 ) was completely removed to give a well‐defined poly(Nisopropylacrylamide), poly(NIPAM), via the acidic hydrolysis. The racemo diad contents in the poly(NIPAM)s could be widely changed from 15 to 83% by choosing the initiator systems for 1 . The poly(NIPAM)s obtained with Li+/Et2Zn initiator system possessed syndiotactic‐rich configurations (r = 75–83%), while either atactic (r = 50%) or isotactic poly(NIPAM) (r = 15–22%) was generated with K+/Et2Zn or Li+/LiCl initiator system, respectively. Atactic and syndiotactic poly(NIPAM)s (42 < r < 83%) were water‐soluble, whereas isotactic‐rich one (r < 31%) was insoluble in water. The cloud points of the aqueous solution of poly(NIPAM)s increased from 32 to 37 °C with the r‐contents. These indicated the significant effect of stereoregularity of the poly(NIPAM) on the water‐solubility and the cloud point in water © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4832–4845, 2006  相似文献   
7.
以不同粒径的CaCO3粒子为成孔剂 ,合成了快速响应的温敏性聚 (N 异丙基丙烯酰胺 ) (PNIPA)水凝胶 .利用扫描电镜观察到水凝胶具有特殊的孔状结构 ,得到水凝胶的孔径大小为几十微米左右 .动力学研究表明 ,该水凝胶在温敏膨胀或收缩时 ,具有快速的响应速率 ,在 10min内的失水率可达 90 % .比较了干凝胶和4 0℃下失水后的凝胶两种不同状态下水凝胶的膨胀曲线 ,发现两者的溶胀动力学曲线明显不同 ,前者的曲线有拐点 .同时发现与失水收缩速率相比 ,水凝胶具有较慢的吸水膨胀速率 .  相似文献   
8.
聚N—异丙基丙烯酰胺溶液的温度依赖关系   总被引:5,自引:0,他引:5  
用自由基聚合法合成了聚N-异丙基丙烯酰胺(PNIPAAM)样品,用乌氏粘度计考查了该聚合物的四氢呋喃(THF)溶液和水溶液的粘度与温度的依赖关系。发现PNIPAAM-THF体系的特性粘数随温度升高而增大,PNIPAAM-H2O体系的特性粘数-温度曲线表现出较为复杂的变化规律。并用实验确定的特性粘数对合成样品的分子量进行了表征Mn=8.44×10^5g·mol^-1。  相似文献   
9.
聚N-异丙基丙烯酰胺溶液的粘度的温度依赖关系   总被引:1,自引:0,他引:1  
用自由基聚合法合成了聚N 异丙基丙烯酰胺(PNIPAAM)样品,用乌氏粘度计考查了该聚合物的四氢呋喃(THF)溶液和水溶液的粘度与温度的依赖关系.发现PNIPAAM THF体系的特性粘数随温度升高而增大,PNIPAAM H2O体系的特性粘数 温度曲线表现出较为复杂的变化规律.并用实验确定的特性粘数对合成样品的分子量进行了表征Mn=844×105g·mol-1.  相似文献   
10.
Responsive polymers have been the focus of many studies during the past decade because of their ability to change according to environmental stimuli. In this paper, we report on the development of a method to synthesize a pH/temperature‐sensitive linear copolymer, poly(Nisopropylacrylamideco‐acrylic acid)(poly(NIPAAm‐co‐AAc)), with a molecular weight of about 106–105 Da in water using azobisisobutyronitrile (AIBN) as the initiator. The effects of the following on the lower critical solution temperature (LCST) of the copolymer and homopolymer of NIPAAm were investigated: the type of buffer salts and pH changes of test solutions, molecular weight and concentration of homopolymer/copolymer solutions, and AAc monomer molar feed ratio (mol%). The effects of different synthesis methods on the molecular weight and on the AAc content were also evaluated. The mechanism of action in environments with different pH values is discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号