首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1720篇
  免费   387篇
  国内免费   330篇
化学   1487篇
晶体学   116篇
力学   28篇
综合类   8篇
数学   5篇
物理学   793篇
  2024年   7篇
  2023年   29篇
  2022年   73篇
  2021年   78篇
  2020年   137篇
  2019年   90篇
  2018年   71篇
  2017年   92篇
  2016年   125篇
  2015年   100篇
  2014年   96篇
  2013年   195篇
  2012年   120篇
  2011年   106篇
  2010年   117篇
  2009年   93篇
  2008年   89篇
  2007年   101篇
  2006年   101篇
  2005年   75篇
  2004年   80篇
  2003年   79篇
  2002年   57篇
  2001年   45篇
  2000年   29篇
  1999年   37篇
  1998年   30篇
  1997年   32篇
  1996年   26篇
  1995年   17篇
  1994年   19篇
  1993年   18篇
  1992年   13篇
  1991年   7篇
  1990年   12篇
  1989年   6篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   8篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1977年   1篇
  1968年   1篇
排序方式: 共有2437条查询结果,搜索用时 578 毫秒
1.
Herein, we propose the construction of a sandwich-structured host filled with continuous 2D catalysis–conduction interfaces. This MoN-C-MoN trilayer architecture causes the strong conformal adsorption of S/Li2Sx and its high-efficiency conversion on the two-sided nitride polar surfaces, which are supplied with high-flux electron transfer from the buried carbon interlayer. The 3D self-assembly of these 2D sandwich structures further reinforces the interconnection of conductive and catalytic networks. The maximized exposure of adsorptive/catalytic planes endows the MoN-C@S electrode with excellent cycling stability and high rate performance even under high S loading and low host surface area. The high conductivity of this trilayer texture does not compromise the capacity retention after the S content is increased. Such a job-synergistic mode between catalytic and conductive functions guarantees the homogeneous deposition of S/Li2Sx, and avoids thick and devitalized accumulation (electrode passivation) even after high-rate and long-term cycling.  相似文献   
2.
As a new type of quantum dots (QDs), hexagonal boron nitride quantum dots (BNQDs) exhibit promising potential in the applications of disease diagnosis, fluorescence imaging, biosensing, metal ion detection, and so on, because of their remarkable chemical stability, excellent biocompatibility, low cytotoxicity, and outstanding photoluminescence properties. However, the large-scale fabrication of homogeneous BNQDs still remains challenging. In this article, the properties and common fabrication methods of BNQDs are summarized based on the recent research progress. Then, the corresponding yields, morphologies, and fabrication mechanisms of these as-obtained BNQDs are discussed in detail. Moreover, the applications of these as-obtained BNQDs in different fields are also discussed. This article is expected to inspire new methods and improvements to achieve large-scale fabrication of homogeneous BNQDs, which will enable their practical applications in future.  相似文献   
3.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   
4.
Optimized combination of chemical agents was selected for sensitive electrochemical detection of dissolved ruthenium tris-(2,2′-bipyridine) (Ru-bipy). The detection was based on the chemical amplification mechanism, in which the anodic current of a redox-active analyte was amplified by a sacrificial electron donor in solution. On indium-doped tin oxide (ITO) electrodes, electrochemical reaction of the analyte was reversible, but that of the electron donor was greatly suppressed. Several transition metal complexes, such as ferrocene and tris-(2,2′-bipyridine) complexes of osmium, iron and ruthenium, were evaluated as model analyte. A correlation between the amplified current and the standard potential of the complex was observed, and Ru-bipy generated the largest current. A variety of organic bases, acids and zwitterions were assessed as potential electron donor. Sodium oxalate was found to produce the largest amplification factor. With Ru-bipy as the model analyte and oxalate as the electron donor, the analyte concentration curve was linear up to 50 μM, with a lower detection limit of approximately 50 nM. Preliminary work was presented in which a Ru-bipy derivative was attached to bovine serum albumin and detected electrochemically. Although the combination of Ru-bipy, oxalate and ITO electrode has been used before for electrochemiluminescent detection of Ru-bipy and oxalate, as well as electrochemical detection of oxalate, its utility in amplified voltammetric detection of Ru-bipy as a potential electrochemical label has not been reported previously.  相似文献   
5.
Multi-quantum well heterostructures (MQWHs) of the novel Ga(NAsP)/GaP material system have been grown, pseudomorphically strained to GaP-substrate. The crystalline perfection is verified by transmission electron microscopy (TEM). For As-concentrations in excess of about 70%, a direct band structure and adequate luminescence efficiency for laser device application is observed. Temperature-dependent photoluminescence (PL) investigations show the influence of carrier localisation and non-radiative recombination processes typical for dilute nitride materials. With rising N content in the active material, the emission wavelength shifts towards longer wavelength, leading to Ga(NAs)/GaP MQW structures with photon energies below the indirect band gap of silicon (Si). At the same time the luminescence intensity drops due to an increase in non-radiative carrier traps and/or structural degradation.  相似文献   
6.
Xanthenediones derivatives have attracted considerable interests in recent times because they constitute a structural unit in a number of natural products1 and have been used as versatile synthons due to the inherent reactivity of the inbuilt pyran ring2. The conventional syntheses of xanthenediones were acid or base catalyzed condensation of appropriate active methylene carbonyl compounds with aldehydes3. However, many of these procedures involved longer reaction times,low yields and side reactions of aldehydes. In recent years, room temperature ionic liquids (RTILs) have been used as novel green reaction media4. Considering that InCl3 is an efficient Lewis acid catalyst used in promoting many organic reactions, especially in several condensation processes, we herein wish to report a very simple and green method for the preparation of poly-hydrogenated xanthenediones through InCl3·4H2O promoted cascade reaction of aldehydes and 5,5-dimethyl-l,3-cyclohexanedione in ionic liquid,1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]). The preparative process presented here is operationally simple, environmentally benign and has the advantage of enhanced atom utilization. Furthermore, the solvent and the catalyst used can be recovered easily and reused efficiently.  相似文献   
7.
An indium-induced reduction-rearrangement reaction of nitro-substituted β-lactams has been used for facile synthesis of oxazines in aqueous ethanol.  相似文献   
8.
报道了N+离子轰击产生的氮化硼(BN)纳米结构,及在电子辐照时结构演化的高分辨透射电子显微镜的原位测定结果.应当强调的是,这种类富勒烯和发夹结构的演化,实际上是电子辐照诱发固态相变的发展,观察中发现的一些BN颗粒、卷曲物,可以被认为是类富勒烯等纳米结构形成的前体或早期阶段.提出了一种类富勒烯等结构的电子辐照动力学模型,并进行了讨论. 关键词: 氮化硼 电子辐照 透射电子显微镜 氮化硼纳米形成物  相似文献   
9.
Temperature effects on deposition rate of silicon nitride films were characterized by building a neural network prediction model. The silicon nitride films were deposited by using a plasma enhanced chemical vapor deposition system and process parameter effects were systematically characterized by 26−1 fractional factorial experiment. The process parameters involved include a radio frequency power, pressure, temperature, SiH4, N2, and NH3 flow rates. The prediction performance of generalized regression neural network was drastically improved by optimizing multi-valued training factors using a genetic algorithm. Several 3D plots were generated to investigate parameter effects at various temperatures. Predicted variations were experimentally validated. The temperature effect on the deposition rate was a complex function of parameters but N2 flow rate. Larger decreases in the deposition rate with the temperature were only noticed at lower SiH4 (or higher NH3) flow rates. Typical effects of SiH4 or NH3 flow rate were only observed at higher or lower temperatures. A comparison with the refractive index model facilitated a selective choice of either SiH4 or NH3 for process optimization.  相似文献   
10.
 利用球磨法制备石墨-六角氮化硼微晶混合物,并在6.1 GPa、800~1 500 ℃条件下与水进行高压反应,以便研究用水作触媒合成B-C-N三元化合物的可能性。通过对反应产物的XRD、XPS谱分析发现:高压下随着温度的升高,反应产物中出现再结晶石墨,其晶化程度逐渐提高;但没有出现再结晶六角氮化硼,也未出现立方氮化硼。在球磨不充分条件下,石墨-六角氮化硼混合物的XRD谱没有完全弥散,它们与水高压反应时,能观察到石墨与立方氮化硼分别结晶的现象,但都没有形成B-C-N晶化结构。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号