首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
  国内免费   1篇
化学   40篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
An imidazolate-bridged copper(II)-zinc(II) complex (Cu(II)-diethylenetriamino-μ-imidazolato-Zn(II)-tris(2-aminoethyl)amine perchlorate (denoted as “Cu,Zn complex”) and a simple copper(II) complex (Cu(II)-tris(2-aminoethyl) amine chloride (“Cu-tren”) were prepared and immobilised on silica gel (by hydrogen or covalent bonds) and montmorillonite (by ion exchange). The immobilised substances were characterised by FT-IR spectroscopy and their thermal characteristics were also studied. The obtained materials were tested in two probe reactions: catalytic oxidation of 3,5-di-tert-butyl catechol (DTBC) (catecholase activity) and the decomposition of hydrogen peroxide (catalase activity). It was found that the catecholase activity of the Cu,Zn complex increased considerably upon immobilization on silica gel via hydrogen bonds and intercalation by ion exchange among the layers of montmorillonite. The imidazolate-bridged copper(II)-zinc(II) complex and its immobilised versions were inactive in hydrogen peroxide decomposition. The Cu(II)-tris(2-aminoethyl)amine chloride complex displayed good catalase activity; however, immobilisation could not improve it.  相似文献   
2.
The polymer redox mediator, poly(neutral red) (PNR), has been synthesised and characterised electrochemically to investigate the best electropolymerisation and mediation conditions for application in enzyme biosensors and to clarify the mechanism of action. Neutral red was electropolymerised by potential cycling on carbon film electrode substrates by allowing the monomer to be oxidised during the full 20 cycles of polymerisation or reducing the positive limit of the potential window after the first 2 cycles to impede monomer oxidation with a view to obtaining longer polymer chains and a lesser degree of branching. Comparison was made with glassy carbon substrates. The PNR films on carbon film electrodes were characterised using cyclic voltammetry and electrochemical impedance spectroscopy, as well as in glucose biosensors prepared with PNR. Glucose oxidase enzyme was immobilised by encapsulation in silica sol-gel and compared with that obtained by cross-linking with glutaraldehyde. The biosensors were evaluated by chronoamperometry in 0.1 M phosphate buffer saline solution, pH 7.0, and showed evidence of electron transfer between the enzyme cofactor flavin adenine dinucleotide and PNR dissolved in the enzyme layer competing with PNR-mediated electrochemical degradation of H2O2 formed during the enzymatic process. This paper is dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   
3.
This paper presents the construction of amperometric biosensors for the highly sensitive detection of carbamate insecticides based on the inhibition of acetylcholinesterase (AChE). This enzyme was immobilised by entrapment in an optimised sol-gel matrix on TCNQ-modified screen-printed electrodes. The enzyme activity was estimated by measuring the thiocholine produced by the enzymatic hydrolysis of the acetylthiocholine using TCNQ as mediator. Wild and genetically engineered AChEs from Drosophila melanogaster (Dm) were chosen for their high sensitivity towards insecticides, which substantially improves the LOD compared with cholinesterases from other sources. The wild type and three mutant enzymes were tested against three carbamate insecticides: carbaryl, carbofuran and pirimicard. The best LOD were obtained with the Y370A mutant for carbaryl (1 × 10−8 M), the E69W mutant for pirimicarb (2 × 10−8 M) and the I161V mutant for carbofuran (8 × 10−10 M). The biosensors were applied to the analysis of two potable water samples.  相似文献   
4.
5.
An optical biosensor for urea based on urease enzyme immobilised on functionalised calcium carbonate nanoparticles (CaCO3-NPs) was successfully developed in this study. CaCO3-NPs were synthesised from discarded cockle shells via a simple and eco-friendly approach, followed by surface functionalisation with succinimide ester groups. The fabricated biosensor is comprised of two layers. The first (bottom layer) contained functionalised NPs covalently immobilised to urease, and the second (uppermost layer) was alginate hydrogel physically immobilised to the pH indicator phenolphthalein. The biosensor provided a colorimetric indication of increasing urea concentrations by changing from colourless to pink. Quantitative urea analysis was performed by measuring the reflectance intensity of the colour change at a wavelength of 633.16 nm. The determination of urea concentration using this biosensor yielded a linear response range of 30–1000 mM (R2 = 0.9901) with a detection limit of 17.74 mM at pH 7.5. The relative standard deviation of reproducibility was 1.14%, with no signs of interference by major cations, such as K+, Na+, NH?+, and Mg2+. The fabricated biosensor showed no significant difference with the standard method for the determination of urea in urine samples.  相似文献   
6.
A simple efficient strategy for the simultaneous synthesis and anchoring of liquid crystal (LC)-stabilised gold nanoparticles (NPs) on indium tin oxide (ITO) substrate is described. A monolayer of 3-mercaptopropyltrimethoxy silane (MPS) compound was formed on ITO and quality of the monolayer was assessed using electrochemical techniques namely cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Gold NP preparation was carried out on this monolayer-modified substrate (and on bare ITO), in a single-step reaction, simply by drop-casting a solution containing an appropriate amount of chloroauric acid and a LC compound possessing a terminal amino group, on the MPS monolayer-modified substrate and heating (70degree) for 2-3 min.. The LC compound served as a reducing agent as well as a capping ligand. LC-capped NPs were chemically anchored onto the ITO substrate through bonding to thiol moiety of the MPS. The CV and EIS analysis of the MPS monolayer showed a complete blocking behaviour for the electron transfer across the electrode/electrolyte interface confirming the formation of a high-quality dense compact monolayer. On the other hand, upon immobilisation of LC-gold NP composite on self-assembled monolayer-modified ITO substrates, both CV and impedance studies showed a small current indicating the gold NP-mediated electron transfer, thus confirming the successful immobilisation of NPs.  相似文献   
7.
This paper reports the successful design of a prototype of an optical biochemical sensor for the determination of hydroperoxides in nonpolar organic liquids. The sensor consists of a matrix of an amphiphilic polymer conetwork (APCN), a novel class of very promising polymeric materials for easy preparation of biochemical sensor matrices. APCNs are characterised by nanoscopic phase separation between the hydrophilic and the hydrophobic phases. For medium ratios of conetwork composition, the domains of both phases are interconnected both on the surface of the conetworks and throughout the bulk. The APCNs have peculiar swelling properties—the hydrophilic phase swells in hydrophilic media and the hydrophobic phase swells in hydrophobic media. In both types of media dissolved reagents can diffuse from the solution into the swollen phase of the polymeric conetwork. This enables loading of the hydrophilic phase of the APCNs with enzymes and indicator reagents by simple impregnation. Hydrophobic analytes can diffuse into the polymeric conetwork via its hydrophobic phase and react with indicator reagents immobilised in the hydrophilic phase at the huge internal interface between the two opposite phases. To prepare the described hydroperoxide-sensitive biosensors, we used APCN films consisting of 58% (w/w) poly(2-hydroxyethyl acrylate) (PHEA) as hydrophilic chains and 42% (w/w) polydimethylsiloxane (PDMS) as hydrophobic linkers. Horseradish peroxidase (HRP) and diammonium 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as indicator reagent were co-immobilised in this optically clear and transparent matrix. In this feasibility study the conditions investigated were principally those relevant to characterisation of the innovative matrix material and the disposable biosensor produced from it; the biosensor was not optimised. Sensitivity toward tert-butylhydroperoxide (tBuOOH) dissolved in n-heptane was acceptable, between approximately 1 and at least 50 mmol L−1, even in the dry state. The response time was 1.7 to 5.0 min. No leaching of immobilised reagents was observed during a period of at least one hour. Pre-swelling the sensors with water increased the reaction rate and the total turnover number of the enzyme. In a dry atmosphere at 4 °C the sensors were found to be stable for at least two weeks.  相似文献   
8.
In this article, a highly sensitive electrochemical sensor is introduced for direct electro-oxidation of bisphenol A (BPA). The novel nanocomposite was prepared based on multi-walled carbon nanotube/thiol functionalised magnetic nanoparticles (Fe3O4-SH) as an immobilisation platform and gold nanoparticles (AuNPs) as an amplifying electrochemical signal. The chemisorbed AuNPs exhibited excellent electrochemical activity for the detection of BPA. Some analysing techniques such as Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and energy-dispersive x-ray diffraction exposed the formation of nanocomposite. Under optimum conditions (pH 9), the sensor showed a linear range between 0.002–240 μM, with high sensitivity (0.25 μA μM?1) along with low detection limit (6.73 × 10?10 M). Moreover, nanocomposites could efficiently decrease the effect of interfering agents and remarkably enhance the utility of sensor at detection of BPA in some real samples.  相似文献   
9.
We report a simple and rapid procedure that leads to incorporation of mediator and introduction of amine functionality onto the surface of screen-printed carbon electrodes (SPCE). The electrodes were doped with cobalt phthalocyanine (CoPc) by enhanced adsorption in a process that uses minimal amounts of this redox mediator as compared with CoPc loaded inks. The CoPc-doped SPCE showed a substantially increased sensitivity to hydrogen peroxide and thiocholine as compared to unmodified electrodes. This greatly facilitated their use as transducers for the construction of amperometric biosensors based on enzymes producing oxidizable products such as hydrogen peroxide or thiols. Immobilisation of enzymes including glucose oxidase, acetylcholinesterase and choline oxidase was achieved through their multi-contact electrostatic interaction with polyethyleneimine (PEI) which was electrodeposited on the surface of CoPc-doped electrodes in one step from ethanolic solution. The efficiency of enzyme immobilisation was shown to depend on the molecular weight of the PEI used, reaching a maximum for 25 kDa PEI. The biosensors shown sensitivity to glucose at 130 nA mM−1 (LOD 0.15 mM) and to acetylcholine at 70 nA mM−1 (LOD 0.10 mM) under +0.6 V. Detection of glucose has been demonstrated at +0.4 V with the sensitivity of 60 nA mM−1 and LOD of 0.33 mM. Possibility of the inhibition analysis of pesticides has been shown for acetylcholinesterase-based sensors.  相似文献   
10.
The results of the laboratory pot experiments on soil mercury (Hg) immobilisation with a non-toxic and price-reasonable agent — colloidal sulphur (S) water suspension, are presented. It was shown that fertilisation with small agrochemical doses of colloidal S reduces excess Hg effectively as follows: in interstitial waters by a factor 2 – 12 times for total Hg, and 22– 680 times for “reactive” Hg; in stems and leaves of oats – 7 – 22 times; and in moss bags, reflecting soil Hg degassing, 7 – 15 times, for the most heavily Hg-spiked soils. The results obtained allowed to conclude that the immobilization of Hg occurs through Hg binding to the newly formed S-bearing functional groups in humic acids and/or sulphides.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号