首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   17篇
  国内免费   7篇
化学   108篇
综合类   1篇
物理学   2篇
  2023年   1篇
  2022年   6篇
  2021年   2篇
  2020年   7篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   8篇
  2013年   15篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   6篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1985年   1篇
排序方式: 共有111条查询结果,搜索用时 0 毫秒
1.
The synthesis of the alkaloid jamtine and the antidepressant paroxetine have been addressed by a strategy involving asymmetric desymmetrisation of prochiral imides by a chiral lithium amide base. A short reaction sequence, starting with a cyclohexane fused succinimide, led to the structures originally reported for the alkaloid jamtine and its derived N-oxide. The structures synthesised are shown not to correspond with those originally reported. A second sequence involves desymmetrisation of a 4-arylglutarimide, and provides a short enantioselective synthesis of the drug substance paroxetine.  相似文献   
2.
A series of new aromatic poly[phenylquinoxaline(ether)imides] were synthesized by solution polycondensation of aromatic diamines containing preformed phenylquinoxaline groups with dianhydrides having ether linkages and isopropylidene or hexafluoroisopropylidene units. All polymers are readily soluble in polar organic solvents (N-methylpyrrolidinone, DMF, dimethylacetamide) and in less polar liquids such as chloroform. Very thin coatings were deposited onto silicon wafers. According to atomic force microscopy, they had a smooth, pinhole-free surface. The polymers showed high thermal stability with decomposition temperatures above 470 °C and glass transition temperatures in the range of 210–238 °C, being thus characterized by a large gap between the glass transition and decomposition temperatures.Based on the report presented at the International Conference Modern Trends in Organoelement and Polymer Chemistry dedicated to the 50th year anniversary of the A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (Moscow, May 30–June 4, 2004).Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1952–1957, September, 2004.  相似文献   
3.
4.
An efficient palladium‐catalyzed C? H functionalization of aldehydes with various N‐substituted N‐heteroarene‐2‐carboxamides has been developed for the synthesis of secondary imides. The reaction tolerates various functionalities, such as methoxy, fluoro, chloro, and bromo groups. A tentative radical mechanism for a PdII/PdIV catalytic cycle is proposed.  相似文献   
5.
Higher catalytic performances of N,N′,N′′‐trihydroxyisocyanuric acid (THICA), N,N‐dihydroxypyromellitimide (NDHPI), and N‐hydroxynaphthalimide (NHNI) than that of N‐hydroxyphthalimide (NHPI) have been demonstrated recently in aerobic oxidation. Herein, the rational design of reactive multi‐nitroxyl organocatalysts has been addressed theoretically by using systematic analysis of some important properties and catalytic activities of yet‐to‐be‐synthesized catalysts. Our results show that 1) NHNI and its analogue, similar to THICA, unlike NHPI and others, are unsuitable for solvent‐ or mediator‐free catalysis due to their strong intramolecular hydrogen‐bonding interactions; 2) increasing the reactive hydroxyimide groups on the same aromatic ring, or doped N atoms or ionic‐pair groups onto the aromatic ring, can improve catalytic reactivity, whereas appropriate enlargement of conjugated aromatic systems results in unchanged activity; 3) the newly designed catalysts are more active than NHPI and NHNI and have catalytic activities comparable to NDHPI and THICA; 4) the ionic‐pair supported case is suggested to be a very active catalyst, even towards inert propane, and can be used as a novel model catalyst for further improvements. The present work will be helpful in designing reactive hydroxyimide organocatalysts.  相似文献   
6.
An electrochemical four‐component reaction cascade Mumm rearrangement was developed. It is a rare example of in situ generation of O‐acyl isoamides for 1,3‐(O→N) acyl transfer. Inexpensive, commercially available arylethylenes, aryl or heterocyclic acids, acetonitrile, and alcohols were used as substrates. A wide range of aryl acids and alcohols were tolerated and provided imides in satisfactory yields. Subsequent hydrolysis of imides could be utilized to synthesize valuable amides and β‐amino alcohol derivatives.  相似文献   
7.
A series of chiral aromatic imides and diimides were synthesized and their electrochemical, absorption, fluorescent, and chiroptical properties were examined for their potential application as molecular chiroptical switches. These compounds exhibit strong UV-vis absorptions, and can be electrochemically reduced to radical anions that absorb in the near infrared (NIR) region. Further reduction to the dianionic states results in new absorptions in the visible region. The changes in circular dichroism upon redox switching were apparent in the UV-vis region but were absent in the NIR region.  相似文献   
8.
发展了一种高效的碱金属盐催化1,2,4-三唑与α,β-不饱和酮及α,β-不饱和二酰亚胺的氮杂Michael加成反应的新方法,以中等到优异的产率得到目标产物.该方法原料易得,底物普适性好,反应条件温和,易实现克级规模的制备.产物容易转化为相应的γ-氨基醇.  相似文献   
9.
(1,1-Dihydroperfluoroalkyl)phenyliodonium N,N-bis(trifluoromethylsulfonyl)imides (4, n = 0-2) were synthesized and used to transfer the corresponding 1,1-dihydroperfluoroalkyl groups to the α-amino group of (l)tyrosine. The obtained Nα-2,2,2-trifluoroethylated (l)tyrosine (6, n = 0) was further used as the N-terminus in the solid phase peptide synthesis of leucine enkephalin analogue. The lipophilicity of the Nα-1,1-dihydroperfluoroalkylated (l)tyrosines (6, n = 0-2) and N-terminus-2,2,2-trifluoroethylated leucine enkephalin analogue (7), as well as the corresponding parent compounds, was measured.  相似文献   
10.
二乙胺基乙腈分別与苯邻二酰亚胺、丁二酰亚胺或邻-磺酰苯酰亚胺反应后,可生成相应的N-氰甲基苯邻二酰亚胺、N-氰甲基丁二酰亚胺,N-氰甲基邻磺酰苯酰亚胺及O-氰甲基邻磺酰苯酰亚胺。酰亚胺或磺酰苯酰亚胺的氰甲基化反应活性,随氮负离子的稳定性及其酸性增强而增大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号