首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Electrochemistry of a mixture of hydrofullerenes C70H36—46 composed of C70H36, C70H38, C70H44, and C70H46 (50, 20, 14, and 15%, respectively) was studied by cyclic voltammetry in THF and CH2Cl2 in the –43—–13 °C temperature range. Two cathodic peaks, namely, one-electron reversible (E° = –3.16 V (Fc0/+), Fc is ferrocene) and irreversible (E p = –3.37 V (Fc0/+)) were observed for this mixture in THF. The irreversible broad oxidation peak (E p = 1.22 V (Fc0/+)) was observed in CH2Cl2. The reversible reduction peak (E° = –3.16 V) and irreversible oxidation peak (E p = 1.22 V) were attributed to the most stable hydrofullerene C70H36. The irreversible reduction (E p = –3.37 V) and oxidation (E p = 1.22 V) peaks were attributed to hydrofullerenes C70H44—46 with a higher degree of hydrogenation. The values of an electrochemical gap, which is an analog of the energy gap (HOMO—LUMO), are 4.38 and 4.59 V for C70H36 and C70H44—46, respectively, and indicate that these hydrofullerenes are sufficiently hard molecules with low reactivity in redox reactions.  相似文献   
2.
Electrochemistry of hydrofullerene C60H36 was studied by cyclic voltammetry in THF and CH2Cl2 in the −47–14 °C temperature range. Hydrofullerene undergoes reversible one-electron reduction to form a radical anion in THF (E 0=−3.18 V (Fc0/Fc+), Fc=ferrocene) and irreversible one-electron oxidation in CH2Cl2 (E p a =1.22 V (Fc0/Fc+)). The reduction potential was used to estimate electron affinity of hydrofullerene as EA=−0.33 eV. It was suggested that C60H36 is an isomer withT-symmetry in which 12 double bonds form four isolated benzenoid rings located in vertices of an imaginary inscribed tetrahedron on the molecular surface. For hydrofullerene, the “electrochemical gap” is an analog of the energy gap (HOMO−LUMO), equal to (E OxE Red)=4.4 V, and indicates that C60H36 is a sufficiently “hard” molecule with a low reactivity in redox reactions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2083–2087, November, 1999.  相似文献   
3.
The temperature dependence of the molar heat capacity (C0 p) of hydrofullerene C60H36 between 5 and 340 K was determined by adiabatic vacuum calorimetry with an error of about 0.2%. The experimental data were used for the calculation of the thermodynamic functions of the compound in the range 0 to340 K. It was found that at T=298.15 K and p=101.325 kPa C0 p (298.15)=690.0 J K−1 mol−1,Ho(298.15)−Ho(0)= 84.94 kJ mol−1,So(298.15)=506.8 J K−1 mol−1, Go(298.15)−Ho(0)= −66.17 kJ mol−1. The standard entropy of formation of hydrofullerene C60H36 and the entropy of reaction of its formation by hydrogenation of fullerene C60 with hydrogen were estimated and at T=298.15 K they were ΔfSo= −2188.4 J K−1 mol−1 and ΔrSo= −2270.5 J K−1mol−1, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号