首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   65篇
  国内免费   20篇
化学   341篇
晶体学   3篇
物理学   2篇
  2023年   2篇
  2022年   6篇
  2021年   14篇
  2020年   21篇
  2019年   7篇
  2018年   11篇
  2017年   3篇
  2016年   27篇
  2015年   24篇
  2014年   20篇
  2013年   20篇
  2012年   22篇
  2011年   18篇
  2010年   7篇
  2009年   15篇
  2008年   23篇
  2007年   9篇
  2006年   13篇
  2005年   15篇
  2004年   16篇
  2003年   13篇
  2002年   4篇
  2001年   6篇
  2000年   10篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
1.
The article describes the principles of the Single Source Precursor approach to inorganic materials and introduces the Geometrical Molecular Structure Design Concept (MSDC) based on the choice of a proper molecular structure type for the desired precursor and completing it with ligands providing both the necessary number of donor atoms and the sterical protection of the chosen core. Application of MSDC is illustrated with examples taken from development of new approaches in the synthesis of oxide and sulfide catalysts and ferroelectric oxide materials.  相似文献   
2.
《Mendeleev Communications》2020,30(3):273-275
  1. Download : Download high-res image (228KB)
  2. Download : Download full-size image
  相似文献   
3.
Two Fe–Ta containing sulfido complexes were prepared by the reaction of the metal halide salts with bis-trimethylsilylsulfide in the presence of PMe3. The complexes demonstrate that coordination chemistry with iron sulfides can give access to a range of heterometallic complexes. In [Cl(Me3P)Ta( 2-S)2( 3-S)Fe(PMe3)2]2 the two [Cl(Me3P)Ta] units are arranged around one central Fe2( 2-S)2 unit. In [(Me3P)4(MeCN)2FeII]2+[(Me3P)2TaIVFeII 3( 3-S)4Br4]2– a [TaFe3S4]2+ cuboidal arrangement was observed. The complex salt forms a polymeric structure in the solid-state with weak H-bonds between the ions. The [(Me3P)2TaIVFeII 3( 3-S)4Br4]2– ion was characterised by magnetic measurements showing strong antiferromagnetic interactions between the metal centres.  相似文献   
4.
The hydrolysis of solutions, containing either LiMo2O4(OPr i )5( i PrOH) and “La(OPr i )3” or LiOPr i and La2Mo4O8(OPr i )14 in 1∶1 ratio, in toluene or i PrOH, by water solutions in isopropanol, leads to formation of monolythic gels. The latter can be converted by drying and heat treatment at 600°C into a fine powder of pure α-LiLaMo2O8 phase, which is transformed into β-LiLaMo2O8 powder by annealing at 800°C. The sintering of the pellets pressed under 4 bar pressure of α-LiLaMo2O8 powder at 800°C for 2 h converts them into pieces of β-LiLaMo2O8 transparent ceramics, thus providing a route to LiLnMo2O8 laser waveguide materials.  相似文献   
5.
Transmetallation of the Fe3(3-X)2(CO)9 clusters (X = S, Se, or Te) under the action of (-C8H12)PtCl2 afforded new heterometallic clusters (-C8H12)Pt(3-X)2Fe2(CO)6 (24, respectively), which were characterized by X-ray diffraction analysis. The (-C8H12)Pt fragment in these clusters is bound to two 3-bridging chalcogen atoms X. The iron atoms are linked to each other. The coordination environment about the Pt atom is planar-square; the Pt...Fe distance is larger than 3.2 . In the synthesis of cluster 4, a new Pt complex was also obtained for which the structure (CO)2Pt(-Te)2Pt(CO)2 (5) was proposed. According to the results of differential scanning calorimetry, thermal decomposition of complex 5 gave rise only to PtTe, whereas complexes 14 gave products with the empirical formula Fe2PtX2C2O2. The influence of the steric effects on the geometry of the clusters is discussed.  相似文献   
6.
Titanium complexes with chelating alkoxide ligands [TiCp*(O(2)Bz)(OBzOH)] (1) and [TiCp*(Me)((OCH(2))(2)Py)] (2) were synthesised by reaction of [TiCp*Me(3)] (Cp*=eta(5)-C(5)Me(5)) with 2-hydroxybenzyl alcohol ((HO)(2)Bz) and 2,6-pyridinedimethanol ((HOCH(2))(2)Py), respectively. Complex 1 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) to yield the early-late heterobimetallic complexes [TiCp*(O(2)Bz)(2)M(cod)] [M=Rh (3), Ir (4)]. Carbon monoxide readily replaces the COD ligand in 3 to give the rhodium dicarbonyl derivative [TiCp*(O(2)Bz)(2)Rh(CO)(2)] (5). Compound 2 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) with protonolysis of a Tibond;Me bond to give [TiCp*((OCH(2))(2)Py)(mu-O)M(cod)] [M=Rh (6), Ir (7)]. The molecular structures of complexes 3, 5 and 7 were established by single-crystal X-ray diffraction studies.  相似文献   
7.
Two LnIII ions are sandwiched by dinuclear CoII building blocks derived from a tris‐triazamacrocyclic ligand bearing pendant carboxylic acid functionality, 1,3,5‐tris((4,7‐bis(2‐carboxyethyl)‐1,4,7‐triazacyclonon‐1‐yl)methyl)‐benzene (H6L), giving rising to two nanoscale heterometallic metal–organic cages formulated as [Co4Ln2(LH2.5)2(H2O)4]·(ClO4)6·NO3·nH2O [Ln = Dy, n = 12 ( 1 ); Ln = Yb, n = 9 ( 2 )], whose internal cavity accommodates a guest NO3? anion. Their hexanuclear cage‐like architectures are maintained both in solution and solid states as confirmed by mass spectrum as well as X‐ray diffraction experiments. These two cages display ligand‐based fluorescence emissions and therefore both were chosen to be operated as fluorescent chemosensors for the detection of nitroaromatic compounds. Attractively, these metal–organic cages allow highly selective and sensitive detection of picric acid (PA) over other nitroaromatics in solution and suspension, and the fluorescence resonance energy transfer (FRET) between the cage probes and PA is mainly responsible for the remarkable detection efficiency.  相似文献   
8.
9.
Polyoxometalates (POMs) with heterodinuclear lanthanoid cores, TBA8H4[{Ln(μ2‐OH)2Ln′}(γ‐SiW10O36)2] ( LnLn′ ; Ln=Gd, Dy; Ln′=Eu, Yb, Lu; TBA=tetra‐n‐butylammonium), were successfully synthesized through the stepwise incorporation of two types of lanthanoid cations into the vacant sites of lacunary [γ‐SiW10O36]8? units without the use of templating cations. The incorporation of a Ln3+ ion into the vacant site between two [γ‐SiW10O36]8? units afforded mononuclear Ln3+‐containing sandwich‐type POMs with vacant sites ( Ln1 ; TBA8H5[{Ln(H2O)4}(γ‐SiW10O36)2]; Ln=Dy, Gd, La). The vacant sites in Ln1 were surrounded by coordinating W? O and Ln? O oxygen atoms. On the addition of one equivalent of [Ln′(acac)3] to solutions of Dy1 or Gd1 in 1,2‐dichloroethane (DCE), heterodinuclear lanthanoid cores with bis(μ2‐OH) bridging ligands, [Dy(μ2‐OH)2Ln′]4+, were selectively synthesized ( LnLn′ ; Ln=Dy, Gd; Ln′=Eu, Yb, Lu). On the other hand, La1 , which contained the largest lanthanoid cation, could not accommodate a second Ln′3+ ion. DyLn′ showed single‐molecule magnet behavior and their energy barriers for magnetization reversal (ΔE/kB) could be manipulated by adjusting the coordination geometry and anisotropy of the Dy3+ ion by tuning the adjacent Ln′3+ ion in the heterodinuclear [Dy(μ2‐OH)2Ln′]4+ cores. The energy barriers increased in the order: DyLu (ΔE/kB=48 K)< DyYb (53 K)< DyDy (66 K)< DyEu (73 K), with an increase in the ionic radii of Ln′3+; DyEu showed the highest energy barrier.  相似文献   
10.
Sequential reaction of a multisite LH4 ligand {2‐[2‐hydroxy‐3‐(hydroxymethyl)‐5‐methylbenzylideneamino]‐2‐methylpropane‐1,3‐diol} with appropriate lanthanide salts followed by the addition of Ni(NO3)2 ? 6 H2O in a 4:1:2 stoichiometric ratio in the presence of triethylamine afforded four heterobimetallic trinuclear complexes [Ni2Gd(LH3)4] ? 3 NO3 ? 3 MeOH ? H2O ? CH3CN ( 1 ), [Ni2Tb(LH3)4] ? 3 NO3 ? 3 MeOH ? CH3CN ( 2 ), [Ni2Dy(LH3)4] ? 3 NO3 ? 3 MeOH ? H2O ? CH3CN ( 3 ), and [Ni2Ho(LH3)4] ? 3 NO3 ? 3 MeOH ? H2O ? CH3CN ( 4 ). Complexes 1 – 4 possess linear trimetallic cores with a central lanthanide ion. Magnetic studies revealed a predominant ferromagnetic interaction between the Ni and Ln centers. Alternating current susceptibility measurements of complex 3 showed a small frequency dependence of the out‐of‐phase signal, χ′′M , under zero direct current field, but without achieving a net maximum above 2 K. Magnetic studies on 1 revealed that it has a significant magnetocaloric effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号