首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   29篇
  国内免费   5篇
化学   64篇
晶体学   1篇
综合类   1篇
物理学   64篇
  2023年   3篇
  2022年   6篇
  2021年   7篇
  2020年   10篇
  2019年   13篇
  2018年   4篇
  2017年   5篇
  2016年   13篇
  2015年   10篇
  2014年   6篇
  2013年   7篇
  2012年   9篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1995年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
1.
The rectifying junction characteristics of the organic compound pyronine-B film on a p-type Si substrate has been studied. The pyronine-B has been sublimed on the top of p-Si surface. The barrier height and ideality factor values of 0.79±0.04 and 1.13±0.06 eV for this structure have been obtained from the forward bias current-voltage (I-V) characteristics. From the low capacitance-frequency (C-f) characteristics as well as conductance-frequency (G-f) characteristics, the energy distribution of the interface states and their relaxation time have been determined in the energy range of (0.53−Ev)-(0.79−Ev) eV taking into account the forward bias I-V data. The interface state density Nss ranges from 4.93×1010 cm−2 eV−1 in (0.79−Ev) eV to 3.67×1013 cm−2 eV−1 in (0.53−Ev) eV. Furthermore, the relaxation ranges from 3.80×10−3 s in (0.53−Ev) eV to 4.21×10−4 s in (0.79−Ev) eV. It has been seen that the interface state density has an exponential rise with bias from the midgap towards the top of the valence band. The relaxation time shows a slow exponential rise with bias from the top of the valence band towards the midgap.  相似文献   
2.
In this work, the donor:acceptor ratio effected photophysical properties of non-fullerene organic solar cells are comparatively investigated. Effective transportation of the photo-generated charge carriers can be obtained with the PDBD-T:ITIC ratio variation. There is no significant energy loss variation exists in the process of changing the D:A ratio.  相似文献   
3.
Efficient separation of photogenerated electron–hole pairs is a crucial factor for high-performance photocatalysts. Effective electron–hole separation and migration could be achieved by heterojunctions with suitable band structures. Herein, a porous SrTiO3/SrSO4 heterojunction is prepared by a sol-gel method at room temperature followed by an annealing process. XRD characterization suggests high crystallinity of the heterostructure. A well-defined interface between the two phases is confirmed by high-resolution (HR)TEM. The photocatalytic H2 evolution productivity of the SrTiO3/SrSO4 heterojunction with Pt as co-catalyst reaches 396.82 μmol g−1 h−1, which is 16 times higher than that of SrTiO3/Pt. The boosted photocatalytic activity of SrTiO3/SrSO4/Pt can be ascribed to the presence of SrSO4, which promotes the transfer and migration of photogenerated carriers by forming the heterojunction and porous structure, which provides a large amount of active sites. This novel porous heterostructure brings new ideas for the development of high-efficiency photocatalysts for H2 release.  相似文献   
4.
Crystal needles of N,N′-bis(1-ethylpropyl)-3,4,9,10-perylenebis(dicarboximide) (EPPTC) are produced through p-stacking and are embedded in the thin film of poly(9,9-din-hexylfluorenyl-2,7-diyl) (PFO) when the blend solution of EPPTC and PFO in p-xylene is spin-coated onto a glass substrate. Charge transfer (CT) complex is resolved from the spectroscopic response of the blend film, which is generated only when the PFO molecules are excited. Thus, the PFO molecules are specified as donors and the H-aggregated EPPTC as acceptors in the formation of CT state (CTS). The emission resulting from the CTS in the red is further recognized by its much longer lifetime than both the intrinsic emission of the individual EPPTC molecules and that of their pure aggregates. Near-field analysis verifies that the CTS form on the boundary between the PFO and the crystal phases. The CT exciton forms by bounding the hole left on HOMO of the donor (PFO) and the indirectly transferred electron to the H-aggregate state of EPPTC, which transits back to the ground state by emitting a photon at about 650 nm. This introduces special physics in the heterojunctions that are coupled with the H-aggregates and mechanisms important for the design of organic photovoltaic devices. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   
5.
In this work, hydrogen plasma etching of surface oxides was successfully accomplished on thin (~100 µm) planar n‐type Czochralski silicon wafers prior to intrinsic hydrogenated amorphous silicon [a‐Si:H(i)] deposition for heterojunction solar cells, using an industrial inductively coupled plasma‐enhanced chemical vapour deposition (ICPECVD) platform. The plasma etching process is intended as a dry alternative to the conventional wet‐chemical hydrofluoric acid (HF) dip for solar cell processing. After symmetrical deposition of an a‐Si:H(i) passivation layer, high effective carrier lifetimes of up to 3.7 ms are obtained, which are equivalent to effective surface recombination velocities of 1.3 cm s–1 and an implied open‐circuit voltage (Voc) of 741 mV. The passivation quality is excellent and comparable to other high quality a‐Si:H(i) passivation. High‐resolution transmission electron microscopy shows evidence of plasma‐silicon interactions and a sub‐nanometre interfacial layer. Using electron energy‐loss spectroscopy, this layer is further investigated and confirmed to be hydrogenated suboxide layers. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
6.
《Current Applied Physics》2015,15(4):511-519
The flat a-Si and slanted nanocolumnar (S-nC) a-Si thin films were prepared on c-Si and corning glass substrates by e-beam physical vapor deposition (EB-PVD) technique. The structural properties of all the grown thin films were determined by X-Ray Diffraction (XRD) analysis and Raman spectroscopy. Surface and cross-sectional morphology of a-Si/c-Si and S-nC a-Si/c-Si heterojunctions were investigated by Field Emission Scanning Electron Microscopy (FE-SEM). Sculptured thin films demonstrate potential for significant nanoscale applications in the area of thin film technology. The electrical and photovoltaic properties of these heterojunctions have been investigated by means of dc current–voltage (I–V) measurements at room temperature in dark and light conditions. The S-nC STFs' performance has been found to be improvable on changing the morphology of the thin film. We have found that, the porous morphology of this structure improves the photosensitivity features in photovoltaic devices and solar cell technology. We gained a high open voltage value, such as 900 mV in S-nC a-Si/c-Si thin film, without any doping process.  相似文献   
7.
Constructing heterojunctions between two semiconductors with matched band structure is an effective strategy to acquire high‐efficiency photocatalysts. The S‐scheme heterojunction system has shown great potential in facilitating separation and transfer of photogenerated carriers, as well as acquiring strong photoredox ability. Herein, a 0D/2D S‐Scheme heterojunction material involving CeO2 quantum dots and polymeric carbon nitride (CeO2/PCN) is designed and constructed by in situ wet chemistry with subsequent heat treatment. This S‐scheme heterojunction material shows high‐efficiency photocatalytic sterilization rate (88.1 %) towards Staphylococcus aureus (S. aureus) under visible‐light irradiation (λ≥420 nm), which is 2.7 and 8.2 times that of pure CeO2 (32.2 %) and PCN (10.7 %), respectively. Strong evidence of S‐scheme charge transfer path is verified by theoretical calculations, in situ irradiated X‐ray photoelectron spectroscopy, and electron paramagnetic resonance.  相似文献   
8.
9.
MoS2 is a promising candidate for hydrogen evolution reaction (HER), while its active sites are mainly distributed on the edge sites rather than the basal plane sites. Herein, a strategy to overcome the inertness of the MoS2 basal surface and achieve high HER activity by combining single-boron catalyst and compressive strain was reported through density functional theory (DFT) computations. The ab initio molecular dynamics (AIMD) simulation on B@MoS2 suggests high thermodynamic and kinetic stability. We found that the rather strong adsorption of hydrogen by B@MoS2 can be alleviated by stress engineering. The optimal stress of −7% can achieve a nearly zero value of ΔGH (~ −0.084 eV), which is close to that of the ideal Pt–SACs for HER. The novel HER activity is attributed to (i) the B– doping brings the active site to the basal plane of MoS2 and reduces the band-gap, thereby increasing the conductivity; (ii) the compressive stress regulates the number of charge transfer between (H)–(B)–(MoS2), weakening the adsorption energy of hydrogen on B@MoS2. Moreover, we constructed a SiN/B@MoS2 heterojunction, which introduces an 8.6% compressive stress for B@MoS2 and yields an ideal ΔGH. This work provides an effective means to achieve high intrinsic HER activity for MoS2.  相似文献   
10.
Exploration of low‐cost and earth‐abundant photocatalysts for highly efficient solar photocatalytic water splitting is of great importance. Although transition‐metal dichalcogenides (TMDs) showed outstanding performance as co‐catalysts for the hydrogen evolution reaction (HER), designing TMD‐hybridized photocatalysts with abundant active sites for the HER still remains challenge. Here, a facile one‐pot wet‐chemical method is developed to prepare MS2–CdS (M=W or Mo) nanohybrids. Surprisedly, in the obtained nanohybrids, single‐layer MS2 nanosheets with lateral size of 4–10 nm selectively grow on the Cd‐rich (0001) surface of wurtzite CdS nanocrystals. These MS2–CdS nanohybrids possess a large number of edge sites in the MS2 layers, which are active sites for the HER. The photocatalytic performances of WS2–CdS and MoS2–CdS nanohybrids towards the HER under visible light irradiation (>420 nm) are about 16 and 12 times that of pure CdS, respectively. Importantly, the MS2–CdS nanohybrids showed enhanced stability after a long‐time test (16 h), and 70 % of catalytic activity still remained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号