首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
  国内免费   2篇
化学   41篇
综合类   1篇
物理学   4篇
  2022年   13篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  1998年   1篇
  1995年   2篇
  1994年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
In order to obtain a continuous source of mitotic metaphases, gill tissue of Aphaius fasciatus (Pisces, Cyprinodontiformes) has been successfully employed. Results gathered after exposure of fish to R2SnClpenG, R3SnClpenGNa, to the parents R2SnCl2, R3SnCl and to penGNa (penGNa = penicillinGNa; R = methyl, butyl and phenyl) suggest that both the parent organotin (IV) chloride and organotin (IV) chloropenG derivatives are toxic while penGNa exerts no significant toxic activity. Essentially, all of the chromosome abnormalities are classifiable as irregularly staining of chromosomes, breakages, side-arm bridges or pseudochiasmata.  相似文献   
2.
In proportion to the environmental pollution problems caused by organotin compounds, the genotoxicities of tin compounds in the environments have become of interest so as to estimate their safety in recent years. In this work, isolated λ-DNA (double-strand DNA) was incubated with inorganic tin(II) and tin(IV) and five organotin compounds [n-butyltin trichloride, di(n-butyltin) dichloride, methyltin trichloride, dimethyltin dichloride and trimethyltin chloride] in reaction systems both with and without hydrogen peroxide (H2O2) content. The tin compounds tested in this study did not induce DNA breakage in the absence of hydrogen peroxide. Divalent inorganic tin (SnCl2) and tetravalent inorganic tin (SnCl4) caused DNA breakage in the presence of hydrogen peroxide (10 mM), and the DNA damage activity of inorganic tin was much more potent in divalent inorganic tin (SnCl2) than in tetravalent inorganic tin (SnCl4). Divalent inorganic tin (SnCl2) induced DNA breakage in a concentration-dependent fashion at concentrations greater than 0.1 mM of SnCl2 in the presence of hydrogen peroxide (10 mM). DNA breakage was not caused by n-butyltin compounds and methyltin compounds either in the presence or in the absence of hydrogen peroxide.  相似文献   
3.
When food containing fat is treated by ionizing radiation, a group of 2-alkylcyclobutanones is formed. These components contain the same number of carbon atoms as their precursor fatty acids and the alkyl group is located in ring position 2. Thus, from palmitic acid 2-dodecylcyclobutanone is derived. To date, there is no evidence that the cyclobutanones occur in unirradiated food. Therefore, these components cannot be considered inherent to food, and for questions pertaining to risk assessment of irradiated food it would be advisable to determine the genotoxic and toxic potentials of cyclobutanones. Measurements of DNA damage in cells exposed to 2-dodecylcyclobutanone, employing the single cell microgel electrophoresis technique, have been carried out. In vitro experiments using rat and human colon cells indicate that 2-docylcyclobutanone in the concentration range of about 0.30 – 1.25 mg/ml induces DNA strand breaks in the cells. Simultaneously, a concentration related cytotoxic effect is observed as was determined by trypan blue exclusion. To which extent these in vitro findings are of relevancy for the in vivo human exposure situation needs to be investigated in further studies. In vivo tests in rats are in progress.  相似文献   
4.
Abstract

A normal phase HPLC methodology using a semi-preparative polyaminocyano column in conjunction with a selection of short-term genotoxicity assays has been developed for bioassay-directed fractionation studies of complex environmental mixtures. To illustrate the effectiveness of this methodology, an organic extract prepared from respirable air particulate samples collected in Hamilton, Canada was separated into a non-polar aromatic fraction and a polar aromatic fraction using a combination of alumina and Sephadex LH20 chromatography. These fractions were evaluated for their genotoxic potential using the Salmonella/microsome (Ames) assay with six different strains of Salmonella.

The non-polar aromatic fraction was analyzed by normal phase HPLC and the eluent was collected in one-minute subfractions; these subtractions were bioassayed in three different Salmonella strains (YG1021 -S9, YG1024 -S9 and YG1029 +S9) to afford three different mutation profiles of this sample. Some subfractions which exhibited high mutagenic responses were subjected to further chemical analyses using GC/MS in order to identify those compounds responsible for the genotoxic responses. The nitroarene compounds 2-nitrofluoranthene, 1-nitropyrene and 2-nitropyrene and higher molecular weight polycyclic aromatic hydrocarbons such as benzo[a]pyrene and indeno[l,2,3-cd]pyrene were identified and quantified in some of the biologically active subfractions. The normal phase gradient conditions afforded very reproducible retention times for a series of polycyclic aromatic standards with a broad range of compound polarities. In addition, polycyclic aromatic hydrocarbons (PAH) were observed to elute from the normal phase HPLC column in a series of peaks; successive peaks contained PAH of increasing molecular weight while any individual peak was shown to contain PAH of the same molecular weight.  相似文献   
5.
The aim of this study was to evaluate the bioremoval mechanism of anthracycline antibiotics by the white-rot fungus B. adusta CCBAS 930. The activity of oxidoreductases and levels of phenolic compounds and free radicals were determined during the biotransformation of anthraquinone antibiotics: daunomycin (DNR) and doxorubicin (DOX) by B. adusta strain CCBAS 930. Moreover, phytotoxicity (Lepidium sativum L.), ecotoxicity (Vibrio fischeri), genotoxicity and cytotoxicity of anthraquinone dyes were evaluated before and after biological treatment. More than 80% and 90% of DNR and DOX were removed by biodegradation (decolorization). Initial solutions of DNR and DOX were characterized by eco-, phyto-, geno- and cytotoxicity. Despite efficient decolorization, secondary metabolites, toxic to bacteria, formed during biotransformation of anthracycline antibiotics in B. adusta CCBAS 930 cultures. DNR and DOX metabolites did not increase reactive oxygen species (ROS) production in human fibroblasts and resazurin reduction. DNR metabolites did not change caspase-3 activity.  相似文献   
6.
朱本占  张静  唐苗  黄春华  邵杰 《化学进展》2022,34(1):227-236
卤代醌是一类卤代芳烃类环境污染物的致癌中间体,也是在饮用水中新发现的氯化消毒副产物。我们最近发现卤代醌和 H2O2 或有机氢过氧化物体系可以不依赖过渡金属离子,而产生高活性的羟基/烷氧自由基和醌氧/醌碳自由基。目前尚不清楚这些卤代醌类致癌物和氢过氧化物共存能否诱导 DNA 产生氧化损伤和修饰,以及其潜在的分子机制是什么。我们的研究发现 DNA 在四氯-1,4-苯醌/H2O2体系中可被氧化产生 8-氧脱氧鸟苷、DNA 链断裂和三种甲基氧化产物,这些反应不依赖过渡金属离子,且由于卤代醌与 DNA 的嵌入作用而导致其氧化作用增强。其他卤代醌也观察到了类似的现象,而且通常比经典的 Fenton 体系更有效。我们进一步将研究从纯化的 DNA 扩展到了活细胞的基因组 DNA。同时还发现卤代醌和有机氢过氧化物(如叔丁基过氧化氢或在正常生理条件下产生的 13S-过氧羟基-9Z,11E-十八碳二烯酸(13-HPODE))共存时,可通过独特的醌氧自由基介导机制诱导 DNA 氧化生成致突变性更强的咪唑啉酮类产物 dIz。这些发现为解释普遍存在的卤代醌类致癌中间体和消毒副产物的潜在基因毒性、致突变性和致癌性提供了新思路。  相似文献   
7.
All-trans-retinoic acid (ATRA), the active metabolite of vitamin A, plays a pivotal role in cell differentiation, proliferation and embryonic development. It is an effective therapy for dermatological disorders and malignancies. ATRA is prone to isomerization and oxidation, which can affect its activity and selectivity. Novel diphenylacetylene-based ATRA analogues with increased stability can help to overcome these problems and may offer significant potential as therapeutics for a variety of cancers and neurodegenerative diseases, including amyotrophic lateral sclerosis. Here, we investigated the effects of these retinoids on cell viability and genotoxicity in the widely used model system of the rapidly proliferating Chinese hamster ovary cell line. DC360 is a fluorescent ATRA analogue and DC324 is a non-active derivative of DC360. EC23, DC525, DC540, DC645, and DC712 are promising analogues with increased bioactivity. The cytotoxic activity of the compounds was evaluated by ATP assay and DNA damage was tested by comet assay. No cytotoxicity was observed in the 10−6–10−5 M concentration range. All compounds induced DNA migration similar to ATRA, but DC324, DC360 and EC23 did so to a greater extent, particularly at higher concentrations. We believe that retinoid receptor-independent genotoxicity is a general characteristic of these compounds; however, further studies are needed to identify the molecular mechanisms and understand their complex biological functions.  相似文献   
8.
建立了测定硝苯地平中基因毒性杂质2、6和12的超高效液相色谱-静电场轨道阱高分辨质谱法(UHPLC-Orbitrap HRMS).样品以甲醇为溶剂,提取后直接进样分析.采用ACE EXCELTM 3 C18-AR色谱柱(150 mm×4.6 mm,3μm)分离,流动相为甲醇-0.1%甲酸水(65:35,v/v),等度洗...  相似文献   
9.
Because of their small size, the specific surface areas of nanoparticulate materials (NP), described as particles having at least one dimension smaller than 100 nm, can be large compared with micrometer-sized respirable particles. This high specific surface area or nanostructural surface properties may affect NP toxicity in comparison with micrometer-sized respirable particles of the same overall composition. Respirable particles depositing on the deep lung surfaces of the respiratory bronchioles or alveoli will contact pulmonary surfactants in the surface hypophase. Diesel exhaust ultrafine particles and respirable silicate micrometer-sized insoluble particles can adsorb components of that surfactant onto the particle surfaces, conditioning the particles surfaces and affecting their in vitro expression of cytotoxicity or genotoxicity. Those effects can be particle surface composition-specific. Effects of particle surface conditioning by a primary component of phospholipid pulmonary surfactant, diacyl phosphatidyl choline, are reviewed for in vitro expression of genotoxicity by diesel exhaust particles and of cytotoxicity by respirable quartz and aluminosilicate kaolin clay particles. Those effects suggest methods and cautions for assaying and interpreting NP properties and biological activities.  相似文献   
10.
The tunable ZnO nanorods (NRs) are produced due to the phytochemicals present in Cycas pschannae leaves which act as reducing and stabilizing agents. The confirmations of the ZnO NRs were validated using different characterization techniques: X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer, Emmett and Teller (BET), scanning electron microscopy–Energy Dispersive X-Ray Analysis (EDX), UV–visible spectroscopy, Raman spectroscopy, and transmission electron microscopy. The ZnO NRs show unique surface area and low particle size. Photocatalytic activity was measured and found to be 50.75% at low concentrations and 78.33% at high concentrations. The antioxidant activity of the ZnO NRs also showed promising results for their use in free radical scavenging. In vitro toxicity studies using zebrafish embryos was performed to evaluate the toxic nature of it and the obtained result confirmed its non-toxic nature. In addition, ZnO anticancer potential was verified using the A549 lung cancer cell line. Cytotoxic assessments of ZnO NRs were performed via 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), and neutral red uptake assays to examine the cell death cycle on the A549 lung cancer cell. Dose-dependent apoptosis and necrosis were confirmed by Lactate dehydrogenase (LDH) assay. It was also confirmed that ZnO NRs induce Reactive oxygen species (ROS) and apoptosis inside cancer (A549) cells via different intrinsic gene expression. Thus, based on this research it is evident that an effective ecofriendly, nontoxic potential anticancer drug can be synthesized using C. pschannae leaf extract.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号