首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32540篇
  免费   3326篇
  国内免费   5364篇
化学   28133篇
晶体学   426篇
力学   2357篇
综合类   289篇
数学   3642篇
物理学   6383篇
  2024年   77篇
  2023年   306篇
  2022年   813篇
  2021年   1072篇
  2020年   1305篇
  2019年   1159篇
  2018年   1052篇
  2017年   1392篇
  2016年   1518篇
  2015年   1434篇
  2014年   1688篇
  2013年   2810篇
  2012年   2098篇
  2011年   1989篇
  2010年   1559篇
  2009年   1894篇
  2008年   1939篇
  2007年   2032篇
  2006年   1807篇
  2005年   1680篇
  2004年   1487篇
  2003年   1333篇
  2002年   1219篇
  2001年   935篇
  2000年   902篇
  1999年   804篇
  1998年   724篇
  1997年   633篇
  1996年   585篇
  1995年   506篇
  1994年   447篇
  1993年   414篇
  1992年   317篇
  1991年   215篇
  1990年   147篇
  1989年   129篇
  1988年   129篇
  1987年   84篇
  1986年   85篇
  1985年   94篇
  1984年   74篇
  1983年   38篇
  1982年   71篇
  1981年   58篇
  1980年   43篇
  1979年   41篇
  1978年   24篇
  1977年   10篇
  1976年   15篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
Automotive proton exchange membrane fuel cell stacks need to meet manufacturer specified rated beginning-of-life (BOL) performance before being assembled into vehicles and shipped off to customers. The process of “breaking-in” of a freshly assembled stack is often referred to as “conditioning.” It has become an intensely researched area especially in automotive companies, where imminent commercialization of fuel cell electric vehicles (FCEVs) demands a short, energy- and cost-efficient, and practical conditioning protocol. Significant advances in reducing the conditioning time from 1 to 2 days to as low as 4h or less, in some cases without the use of additional inert gases such as nitrogen, and with minimal use of hydrogen, and specialized test stations will be discussed.  相似文献   
3.
Facile construction of sulfur-rich polymers using readily available raw chemicals is an area aggressively pursued but challenging. Herein we use common feedstocks of ethylene oxide (EO), propylene oxide (PO), and carbonyl sulfide (COS) to synthesize copoly(thioether)s which are traditionally produced from unpleasant and difficult to store episulfides. In this protocol, the EO/COS coupling selectively generates a pure poly(ethylene sulfide) (PES) with melting temperature (Tm) values up to 172°C and high yields up to 98%. The EO/PO/COS terpolymerization leads to the incorporation of soft poly(propylene sulfide) (PPS) and hard PES segments together, affording a random PES-co-PPS copoly(thioether) with the complete consumption of EO and PO. Additionally, by simply varying the EO/PO feeding ratio, the obtained copoly(thioether)s possess tunable thermal properties, Tm values in the range of 76–144°C, and excellent solubility. These copolymerizations are conducted in one-pot/one-step at industrially favored reaction temperatures of 100–120°C using catalysts of common organic bases, suggesting a facile and practical manner. Especially, the copoly(thioether) exhibits high refractive indices up to 1.68 owing to its high sulfur content, suggesting a broad application prospect in optical materials.  相似文献   
4.
《Mendeleev Communications》2022,32(1):105-108
A mixed-metal 1D coordination polymer [CaCu(HBTC)2(H2O)8]n (where H3BTC – benzene-1,3,5-tric arboxylic acid) was obtained in a solvothermal synthesis of a well-known copper-containing metal–organic framework [Cu3(BTC)2(H2O)3]n (HKUST-1) in autoclaves 3D-printed from commercial polypropylene. This material was a source of calcium ions, apparently, leaking from a colorant (calcium carbonate) promoted by glacial acetic acid as a modulator used to produce large single crystals of HKUST-1. This finding was confirmed by elemental analysis and a model experiment that resulted in a new calcium-based 1D coordination polymer [Ca(H2BTC)2(H2O)5]n under the same solvothermal conditions with no copper or calcium salts put into a 3D-printed autoclave.  相似文献   
5.
The minimum k-enclosing ball problem seeks the ball with smallest radius that contains at least k of m given points. This problem is NP-hard. We present a branch-and-bound algorithm on the tree of the subsets of k points to solve this problem. Our method is able to solve the problem exactly in a short amount of time for small and medium sized datasets.  相似文献   
6.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
7.
8.
Molecularly imprinted polymer (MIP) computational design is expected to become a routine technique prior to synthesis to produce polymers with high affinity and selectivity towards target molecules. Furthermore, using these simulations reduces the cost of optimizing polymerization composition. There are several computational methods used in MIP fabrication and each requires a comprehensive study in order to select a process with results that are most similar to properties exhibited by polymers synthesized through laboratory experiments. Until now, no review has linked computational strategies with experimental results, which are needed to determine the method that is most appropriate for use in designing MIP with high molecular recognition. This review will present an update of the computational approaches started from 2016 until now on quantum mechanics, molecular mechanics and molecular dynamics that have been widely used. It will also discuss the linear correlation between computational results and the polymer performance tests through laboratory experiments to examine to what extent these methods can be relied upon to obtain polymers with high molecular recognition. Based on the literature search, density functional theory (DFT) with various hybrid functions and basis sets is most often used as a theoretical method to provide a shorter MIP manufacturing process as well as good analytical performance as recognition material.  相似文献   
9.
占兴  熊巍  梁国熙 《化学进展》2022,34(11):2503-2516
随着经济的飞速发展,社会对能源的需求日益扩大,对工业废水的无害化处理也提出了更高的要求。光催化燃料电池 (photocatalytic fuel cell, PFC) 在燃料电池中引入半导体光催化材料作为电极,实现了有机污染物高效降解和同步对外产电的双重功能,在废水无害化与资源化利用方面具有潜在的应用价值。半导体光催化电极是PFC系统高效运行的核心组件,增强其可见光响应和光生载流子分离是提高PFC性能的关键策略。反应器结构设计和运行参数优化也有利于改善PFC性能。本文从PFC基本原理和应用入手,综述了PFC在环境污染物资源化处理中的研究进展,并详细阐述了提高PFC的污染控制性能和产电效率的优化手段,为进一步设计高效稳定的PFC系统并实现其在水污染控制和清洁能源生产中的应用提供理论指导。  相似文献   
10.
With a vast, synthetically accessible compositional space and highly tunable hydrolysis rates, poly(β-amino ester)s (PBAEs) are an attractive degradable polymer platform. Leveraging PBAEs in a wide range of applications hinges on the ability to program degradation, which, thus far, has been frustrated by multiple confounding phenomena contributing to the degradation of these charged polyesters. Basic conditions accelerate hydrolysis, yet reduce solubility, limiting water access to amines and esters. Further, the high buffering capacity of PBAEs can render buffers ineffective at controlling solution pH. To unify understanding of PBAE degradation and solution properties, this study examines PBAE hydrolysis as a function of pH and buffer concentration as well as polymer hydrophobicity. At low buffer concentrations, the PBAE amines and the acid produced during hydrolysis control solution pH. Meanwhile, at high buffer concentrations that afford relatively constant pH, hydrolysis rate increases with pH, despite the reduced PBAE solubility. Increasing the hydrophobic content of PBAEs eventually hinders the capacity of the polymer to accept protons from solution, limiting the pH increase and slowing hydrolysis. These studies showcase the role of buffering on the pH-dependent degradation and solution properties of PBAEs, providing guidance for programming degradation in applications ranging from drug delivery to thermosets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号