首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53182篇
  免费   3758篇
  国内免费   11028篇
化学   61319篇
晶体学   459篇
力学   379篇
综合类   383篇
数学   448篇
物理学   4980篇
  2024年   120篇
  2023年   718篇
  2022年   1642篇
  2021年   1776篇
  2020年   2229篇
  2019年   1987篇
  2018年   1878篇
  2017年   1928篇
  2016年   2235篇
  2015年   2109篇
  2014年   2797篇
  2013年   5007篇
  2012年   3394篇
  2011年   3270篇
  2010年   2697篇
  2009年   3023篇
  2008年   3290篇
  2007年   3536篇
  2006年   3283篇
  2005年   3029篇
  2004年   2858篇
  2003年   2361篇
  2002年   1782篇
  2001年   1309篇
  2000年   1321篇
  1999年   1101篇
  1998年   913篇
  1997年   912篇
  1996年   826篇
  1995年   768篇
  1994年   652篇
  1993年   531篇
  1992年   517篇
  1991年   371篇
  1990年   297篇
  1989年   285篇
  1988年   218篇
  1987年   142篇
  1986年   109篇
  1985年   104篇
  1984年   106篇
  1983年   53篇
  1982年   77篇
  1981年   64篇
  1980年   49篇
  1979年   43篇
  1978年   48篇
  1977年   34篇
  1976年   40篇
  1974年   41篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
1.
The γcmc values of CTAB-SDS decrease from 63.67 mN/m at 10‡C to 36.38 mN/m at 90‡C, slightly lower than those of either CTAB or SDS. Correspondingly, the CMC of CTAB-SDS decreases almost by half. The increase of surface activity of CTAB-SDS can be attributed to the relatively weak electrostatic interaction at high temperature, which is supported by the increase of solubility of CTAB-SDS with rise in temperature. Catalytic effect on oxidation of toluene derivatives with potassium permanganate follows the order CTAB-SDS > SDS > CTAB. This is not caused by the dissociative effect of CTAB-SDS with low surface activity at low temperature, as seen from the fact that almost all oxidative products can be retrieved for different toluene derivatives and surfactants by mimicking the conditions of reaction. In the emulsifications of toluene derivatives at 90‡C, the time that turbid water layers of surfactant solutions take to become clear is the same as that of the catalytic effect on oxidation of toluene derivatives. Thus, it can be inferred that surfactants can improve the oxidation yields of toluene derivatives by increasing the contact between two reacting phases.  相似文献   
2.
A series of (di)picolinic acids and their derivates are investigated as novel complexing tridentate or bidentate ligands in the iron‐mediated reverse atom transfer radical polymerization of methyl methacrylate in N,N‐dimethylformamide at 100 °C with 2,2′‐azobisisobutyrontrile as an initiator. The polymerization rates and polydispersity indices (1.32–1.8) of the resulting polymers are dependent on the structures of the ligands employed. Different iron complexes may be involved in iron‐mediated reverse atom transfer radical polymerization, depending on the type of acid used. 1H NMR spectroscopy has been used to study the structure of the resulting polymers. Chain‐extension reactions have been performed to further confirm the living nature of this catalytic system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2912–2921, 2006  相似文献   
3.
Time‐dependent differential equations can be solved using the concept of method of lines (MOL) together with the boundary element (BE) representation for the spatial linear part of the equation. The BE method alleviates the need for spatial discretization and casts the problem in an integral format. Hence errors associated with the numerical approximation of the spatial derivatives are totally eliminated. An element level local cubic approximation is used for the variable at each time step to facilitate the time marching and the nonlinear terms are represented in a semi‐implicit manner by a local linearization at each time step. The accuracy of the method has been illustrated on a number of test problems of engineering significance. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006  相似文献   
4.
Juzo Oyamada 《Tetrahedron》2006,62(29):6918-6925
Synthesis of coumarins from phenols and propiolic acids was examined by using a Pt catalyst such as PtCl2/AgOTf, K2PtCl4/AgOTf, and K2PtCl4/AgOAc. Propiolic acid reacted even with less reactive phenols in trifluoroacetic acid to give coumarins and dihydrocoumarins. In the case of substituted propiolic acids, phenylpropiolic acid and 2-octynoic acid, the reactions proceeded selectively to afford coumarins in good to high yields.  相似文献   
5.
New biodegradable/biocompatible ABC block copolymers, poly(ethylene oxide)‐b‐poly(glycidol)‐b‐poly(L ,L ‐lactide) (PEO‐PGly‐PLLA), were synthesized. First, PEO‐b‐poly(1‐ethoxyethylglycidol)‐b‐PLLA was synthesized by a successive anionic ring‐opening copolymerization of ethylene oxide, 1‐ethoxyethylglycidyl ether, and L ,L ‐lactide initiated with potassium 2‐methoxyethanolate. In the second step, the 1‐ethoxyethyl blocking groups of 1‐ethoxyethylglycidyl ether were removed at weakly acidic conditions leaving other blocks intact. The resulting copolymers were composed of hydrophilic and hydrophobic segments joined by short polyglycidol blocks with one hydroxyl group in each monomeric unit. These hydroxyl groups may be used for further copolymer transformations. The PEO‐PGly‐PLLA copolymers with a molecular weight of PLLA blocks below 5000 were water‐soluble. Above the critical micellar concentration (ranging from 0.05 to1.0 g/L, depending on the composition of copolymer), copolymers formed macromolecular micelles with a hydrophobic PLLA core and hydrophilic PEO shell. The diameters of the micelles were about 25 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3750–3760, 2003  相似文献   
6.
    
The diversity of products in the reaction of diethyl azodicarboxylate (DEAD)/diisopropyl azodicarboxylate (DIAD) and activated acetylenes with PIII compounds bearing oxygen or nitrogen substituents is discussed. New findings that are useful in understanding the nature of intermediates involved in the Mitsunobu reaction are highlighted. X-ray structures of two new compounds (2-t-Bu-4-MeC6H3O)P (μ-N-t-Bu)2P+[(NH-t-Bu)N[(CO2]-i-Pr)(HNCO2-i-Pr)]](Cl-)(2-t-Bu-4-MeC6H3OH)(23)and [CH2(6-t-Bu-4-Me-C6H2O)2P(O)C(CO2Me)C-(CO2Me)CClNC(O)Cl] (33) are also reported. The structure of23 is close to one of the intermediates proposed in the Mitsunobu reaction.  相似文献   
7.
A one-dimensional bulk reaction model for the oxidation of nickeltitanium is formulated, with preferential oxidation of titaniumbeing included. The modelling is directed at the better understandingof the dominant mechanisms involved in the oxidation processand their significance for the biocompatibility of the alloy.Two different regimes for the relative diffusivities of oxygenand the metals are investigated. By assuming fast bulk reactions,different asymptotic structures emerge in different parameterregimes and the resulting models take the form of moving boundaryproblems. Different profiles of nickel concentration are obtained:in particular a nickel-rich layer (observed in practice) ispresent below the oxide/metal interface for the case when oxygenand the metals diffuse at comparable rates.  相似文献   
8.
The oxidation of symmetrical disulfides [D ,L ‐cystine ( 1 ) and 3,3′‐dithiobis(propionic acid) ( 2 )] with hydrogen peroxide in D2O–NaOH solution (pH 10–11) was studied by NMR spectroscopy. Assignments of the proton and carbon NMR signals of starting materials ( 1 and 2 ) and products of oxidation are based on conventional 1D NMR methods (DEPT, selective spin decoupling). Formation of C—S bond cleavage products or, in case of 2 , partially oxidized intermediates was not detected. The accelerating effect of Cu2+ cations, but not Fe3+ cations, on the oxidation rate of 1 in basic medium was demonstrated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
9.
A two‐stage co‐oligomerization of the oligomers initially formed from an equimolar mixture of isophthalic acid (IPA) and terephthalic acid (TPA) and 2,2‐bis(4‐hydroxyphenyl)propane (BPA, 50 mol %) with bisphenols (BPs, 20 mol %) was carried out using a tosyl chloride/dimethylformamide/pyridine condensing agent. The distributions of the resulting oligomers (nx‐mers), which were quenched with methanol, were determined by a combination of gel permeation chromatography (GPC) and NMR. These distributions (presented by molar percentage) were conveniently calculated with the equation nx (mol %) = nx (% mol by GPC) × n0 (mol % by NMR)/n0 (% mol by GPC), where nx (% mol) = nx (wt % by GPC)/its molecular weight. The results showed the distributions of the preformed IPA/TPA‐BPA oligomers to be in fairly good accord with those obtained directly from GPC and to be supported by the NMR results. The calculation was applied to the co‐oligomers prepared up to a reaction of 0.7, at which there was an increase in the number of higher oligomers indivisible by GPC and the distributions could no longer be determined by molar percentage. The calculated distributions are discussed in relation to the results of copolycondensation. The sequence distributions in the resulting co‐oligomers, which were also examined by NMR, are compared with those in the copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 44–51, 2004  相似文献   
10.
The synthesis and structural characterization of a series of novel, fluorinated poly(phthalazinone ether)s containing perfluorophenylene moieties are described. The monomers, 4‐(4′‐hydroxyaryl)phthalazin‐1(2H)‐ones ( 2a – 2d ), were conveniently and efficiently synthesized from phenols and phthalic anhydride in two steps via 2‐(4′‐hydroxybenzoyl)benzoic acids, which were first obtained by the Friedel–Crafts reaction in good yields and with high stereoselectivity and were then converted into 2a – 2d by fusion with hydrazine. All the polymers were prepared by nucleophilic aromatic substitution (SNAr) polycondensation between the compounds perfluorobiphenyl and 4‐(4′‐hydroxyaryl)phthalazin‐1(2H)‐ones ( 2a ‐ 2d ). The resulting fluorinated polymers were readily soluble in common organic solvents (e.g., CHCl3, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, N‐methylpyrrolidone, etc.) at room temperature. Their weight‐average molecular weights and the polydispersities ranged from (7.96–18.25) × 103 to 1.31–2.71, respectively. Their glass‐transition temperatures varied from 213 to 263 °C. They were all stable up to 390 °C both in air and in argon. The 5% weight‐loss temperatures of these polymers in air and argon ranged from 393–487 to 437–509 °C, respectively. Wide‐angle X‐ray diffraction studies indicated they were all amorphous and could be attributed to the presence of kink nonplanar moiety, phenyl phthalazinone along the polymer backbone. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 925–932, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号