首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  国内免费   2篇
化学   23篇
物理学   1篇
  2024年   4篇
  2023年   2篇
  2022年   12篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2013年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
The use of nanomaterials rationally engineered to treat cancer is a burgeoning field that has reported great medical achievements. Iron-based polymeric nano-formulations with precisely tuned physicochemical properties are an expanding and versatile therapeutic strategy for tumor treatment. Recently, a peculiar type of regulated necrosis named ferroptosis has gained increased attention as a target for cancer therapy. Here, we show for the first time that novel iron oxide nanoparticles coated with gallic acid and polyacrylic acid (IONP–GA/PAA) possess intrinsic cytotoxic activity on various cancer cell lines. Indeed, IONP–GA/PAA treatment efficiently induces ferroptosis in glioblastoma, neuroblastoma, and fibrosarcoma cells. IONP–GA/PAA-induced ferroptosis was blocked by the canonical ferroptosis inhibitors, including deferoxamine and ciclopirox olamine (iron chelators), and ferrostatin-1, the lipophilic radical trap. These ferroptosis inhibitors also prevented the lipid hydroperoxide generation promoted by the nanoparticles. Altogether, we report on novel ferroptosis-inducing iron encapsulated nanoparticles with potent anti-cancer properties, which has promising potential for further in vivo validation.  相似文献   
2.
Iron is a crucial element required for the proper functioning of the body. For instance, hemoglobin is the vital component in the blood that delivers oxygen to various parts of the body. The heme protein present in hemoglobin comprises iron in the form of a ferrous state which regulates oxygen delivery. Excess iron in the body is stored as ferritin and would be utilized under iron-deficient conditions. Surprisingly, cancer cells as well as cancer stem cells have elevated ferritin levels suggesting that iron plays a vital role in protecting these cells. However, apart from the cytoprotective role iron also has the potential to induce cell death via ferroptosis which is a non-apoptotic cell death dependent on iron reserves. Apoptosis a caspase-dependent cell death mechanism is effective on cancer cells however little is known about its impact on cancer stem cell death. This paper focuses on the molecular characteristics of apoptosis and ferroptosis and the importance of switching to ferroptosis to target cancer stem cells death thereby preventing cancer relapse. To the best of our knowledge, this is the first review to demonstrate the importance of intracellular iron in regulating the switching of tumor cells and therapy resistant CSCs from apoptosis to ferroptosis.  相似文献   
3.
Ferroptosis is a recently described programmed cell death mechanism that is characterized by the buildup of iron (Fe)-dependent lipid peroxides in cells and is morphologically, biochemically, and genetically distinct from other forms of cell death, having emerged to play an important role in cancer biology. Ferroptosis has significant importance during cancer treatment because of the combination of factors, including suppression of the glutathione peroxidase 4 (Gpx4), cysteine deficiency, and arachidonoyl (AA) peroxidation, which cause cells to undergo ferroptosis. However, the physiological significance of ferroptosis throughout development is still not fully understood. This current review is focused on the factors and molecular mechanisms with the diagrammatic illustrations of ferroptosis that have a role in the initiation and sensitivity of ferroptosis in various malignancies. This knowledge will open a new road for research in oncology and cancer management.  相似文献   
4.
(1) Background: the current research was conducted to investigate the potential non-antioxidant roles of vitamin E in the protection of hepatocysts from oxidative damage. (2) Methods: primary sheep hepatocytes were cultured and exposed to 200, 400, 600, or 800 μmol/L hydrogen peroxide, while their viability was assessed using a CCK-8 kit. Then, cells were treated with 400 μmol/L hydrogen peroxide following a pretreatment with 50, 100, 200, 400, and 800 μmol/L vitamin E and their intracellular ROS levels were determined by means of the DCF-DA assay. RNA-seq, verified by qRT-PCR, was conducted thereafter: non-treated control (C1); cells treated with 400 μmol/L hydrogen peroxide (C2); and C2 plus a pretreatment with 100 μmol/L vitamin E (T1). (3) Results: the 200–800 μmol/L hydrogen peroxide caused significant cell death, while 50, 100, and 200 μmol/L vitamin E pretreatment significantly improved the survival rate of hepatocytes. ROS content in the cells pretreated with vitamin E was significantly lower than that in the control group and hydrogen-peroxide-treated group, especially in those pretreated with 100 μmol/L vitamin E. The differentially expressed genes (DEGs) concerning cell death involved in apoptosis (RIPK1, TLR7, CASP8, and CASP8AP2), pyroptosis (NLRP3, IL-1β, and IRAK2), and ferroptosis (TFRC and PTGS2). The abundances of IL-1β, IRAK2, NLRP3, CASP8, CASP8AP2, RIPK1, and TLR7 were significantly increased in the C1 group and decreased in T1 group, while TFRC and PTGS2 were increased in T1 group. (4) Conclusions: oxidative stress induced by hydrogen peroxide caused cellular damage and death in sheep hepatocytes. Pretreatment with vitamin E effectively reduced intracellular ROS levels and protected the hepatocytes from cell death by regulating gene expression associated with apoptosis (RIPK1, TLR7, CASP8, and CASP8AP2) and pyroptosis (NLRP3, IL-1β, and IRAK2), but not ferroptosis (TFRC and PTGS2).  相似文献   
5.
Synthetic arylamines and dietary phytophenolics could inhibit ferroptosis, a recently discovered regulated cell death process. However, no study indicates whether their inhibitory mechanisms are inherently different. Herein, the ferroptosis-inhibitory mechanisms of selected ferrostatin-1 (Fer-1) and two dietary stilbenes (piceatannol and astringin) were compared. Cellular assays suggested that the ferroptosis-inhibitory and electron-transfer potential levels decreased as follows: Fer-1 >> piceatannol > astringin; however, the hydrogen-donating potential had an order different from that observed by the antioxidant experiments and quantum chemistry calculations. Quantum calculations suggested that Fer-1 has a much lower ionization potential than the two stilbenes, and the aromatic N-atoms were surrounded by the largest electron clouds. By comparison, the C4′O-H groups in the two stilbenes exhibited the lowest bond disassociation enthalpies. Finally, the three were found to produce corresponding dimer peaks through ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis. In conclusion, Fer-1 mainly depends on the electron transfer of aromatic N-atoms to construct a redox recycle. However, piceatannol and astringin preferentially donate hydrogen atoms at the 4′-OH position to mediate the conventional antioxidant mechanism that inhibits ferroptosis, and to ultimately form dimers. These results suggest that dietary phytophenols may be safer ferroptosis inhibitors for balancing normal and ferroptotic cells than arylamines with high electron-transfer potential.  相似文献   
6.
This review provides an overview of the progress made by computational and systems biologists in characterizing different cell death regulatory mechanisms that constitute the cell death network. We define the cell death network as a comprehensive decision-making mechanism that controls multiple death execution molecular circuits. This network involves multiple feedback and feed-forward loops and crosstalk among different cell death-regulating pathways. While substantial progress has been made in characterizing individual cell death execution pathways, the cell death decision network is poorly defined and understood. Certainly, understanding the dynamic behavior of such complex regulatory mechanisms can be only achieved by applying mathematical modeling and system-oriented approaches. Here, we provide an overview of mathematical models that have been developed to characterize different cell death mechanisms and intend to identify future research directions in this field.  相似文献   
7.
Gentamicin (GEN) is a kind of aminoglycoside antibiotic with the adverse effect of nephrotoxicity. Currently, no effective measures against the nephrotoxicity have been approved. In the present study, epigallocatechin gallate (EG), a useful ingredient in green tea, was used to attenuate its nephrotoxicity. EG was shown to largely attenuate the renal damage and the increase of malondialdehyde (MDA) and the decrease of glutathione (GSH) in GEN-injected rats. In NRK-52E cells, GEN increased the cellular ROS in the early treatment phase and ROS remained continuously high from 1.5 H to 24 H. Moreover, EG alleviated the increase of ROS and MDA and the decrease of GSH caused by GEN. Furthermore, EG activated the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). After the treatment of GEN, the protein level of cleaved-caspase-3, the flow cytometry analysis and the JC-1 staining, the protein levels of glutathione peroxidase 4 (GPX4) and SLC7A11, were greatly changed, indicating the occurrence of both apoptosis and ferroptosis, whereas EG can reduce these changes. However, when Nrf2 was knocked down by siRNA, the above protective effects of EG were weakened. In summary, EG attenuated GEN-induced nephrotoxicity by suppressing apoptosis and ferroptosis.  相似文献   
8.
Despite the widespread applications of manganese oxide nanomaterials (MONs) in biomedicine, the intrinsic immunogenicity of MONs is still unclear. MnOx nanospikes (NSs) as tumor microenvironment (TME)‐responsive nanoadjuvants and immunogenic cell death (ICD) drugs are proposed for cancer nanovaccine‐based immunotherapy. MnOx NSs with large mesoporous structures show ultrahigh loading efficiencies for ovalbumin and tumor cell fragment. The combination of ICD via chemodynamic therapy and ferroptosis inductions, as well as antigen stimulations, presents a better synergistic immunopotentiation action. Furthermore, the obtained nanovaccines achieve TME‐responsive magnetic resonance/photoacoustic dual‐mode imaging contrasts, while effectively inhibiting primary/distal tumor growth and tumor metastasis.  相似文献   
9.
Research on ferroptosis in myocardial ischemia/reperfusion injury (MIRI) using mitochondrial viscosity as a nexus holds great promise for MIRI therapy. However, high-precision visualisation of mitochondrial viscosity remains a formidable task owing to the debilitating electrostatic interactions caused by damaged mitochondrial membrane potential. Herein, we propose a dual-locking mitochondria-targeting strategy that incorporates electrostatic forces and probe-protein molecular docking. Even in damaged mitochondria, stable and precise visualisation of mitochondrial viscosity in triggered and medicated MIRI was achieved owing to the sustained driving forces (e.g., pi-cation, pi-alkyl interactions, etc.) between the developed probe, CBS , and the mitochondrial membrane protein. Moreover, complemented by a western blot, we confirmed that ferrostatin-1 exerts its therapeutic effect on MIRI by improving the system xc/GSH/GPX4 antioxidant system, confirming the therapeutic value of ferroptosis in MIRI. This study presents a novel strategy for developing robust mitochondrial probes, thereby advancing MIRI treatment.  相似文献   
10.
通过无机碘盐(MIn)与cis-[Fe (CO)4I2]反应制备了5个盐类化合物fac-M[Fe (CO)3I3]n(Mn+=Na+(1),K+(2),Mg2+(3),Ca2+(4),NH4+(5)),探讨了阳离子Mn+fac-[Fe (CO)3I3]-阴离子的稳定性和细胞毒性的影响。通过傅里叶变换红外光谱(FTIR)监测,发现盐1~5在DMSO、D2O、生理盐水等介质中均能缓释CO,其释放动力学符合一级反应动力学模型;还发现溶液中碘离子的浓度和酸度对该阴离子的缓释CO性能也具有调节作用。通过噻唑蓝(MTT)实验评估了盐1~5对膀胱癌细胞的毒性,其24 h半抑制浓度(IC50)在25~43 μmol·L-1。与有机铵阳离子类的盐化合物相比,盐1~5在含水介质中的释放CO速率下降,毒性亦有下调。研究还发现这类fac-[Fe (CO)3I3]-阴离子在缓释CO的同时释放碘自由基,并能导致线粒体活性氧(ROS)水平、Parkin蛋白表达均上调。铁死亡抑制剂(Ferrostatin-1和Liproxstatin-1)试验结果表明这类化合物可能引发铁死亡通路并促进肿瘤细胞死亡。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号