首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2017年   1篇
  2012年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Eslicarbazepine acetate (BIA 2-093) is a novel central nervous system drug undergoing clinical phase III trials for epilepsy and phase II trials for bipolar disorder. A simple and reliable chiral reversed-phase HPLC-UV method was developed and validated for the simultaneous determination of eslicarbazepine acetate, oxcarbazepine, S-licarbazepine and R-licarbazepine in human plasma. The analytes and internal standard were extracted from plasma by a solid-phase extraction using Waters Oasis HLB cartridges. Chromatographic separation was achieved by isocratic elution with water-methanol (88:12, v/v), at a flow rate of 0.7 mL/min, on a LichroCART 250-4 ChiraDex (beta-cyclodextrin, 5 microm) column at 30 degrees C. All compounds were detected at 225 nm. Calibration curves were linear over the range 0.4-8 microg/mL for eslicarbazepine acetate and oxcarbazepine, and 0.4-80 microg/mL for each licarbazepine enantiomer. The overall intra- and interday precision and accuracy did not exceed 15%. Mean relative recoveries varied from 94.00 to 102.23% and the limit of quantification of the assay was 0.4 microg/mL for all compounds. This method seems to be a useful tool for clinical research and therapeutic drug monitoring of eslicarbazepine acetate and its metabolites S-licarbazepine, R-licarbazepine and oxcarbazepine.  相似文献   
2.
Therapeutic drug monitoring (TDM) of anti‐epileptic drugs (AED) is a routine application. Carbamazepine (CRB) is monitored as the parent drug while oxcarbazepine (OXC) and eslicarbazepine acetate (ESL) are monitored as their active metabolite (eslicarbazepine; MHD). We have developed a UPLC‐MS/MS method for determining CRB, OXC, ESL and MHD in plasma or serum with a simplified extraction protocol. The developed method detects sildenafil (SLD), which clinically interferes with AED and is likely to be co‐administered in epileptic patients suffering from sexual insufficiency (60%). MHD was prepared in‐house. AED were simultaneously determined in presence of SLD using gatifloxacin as an internal standard (IS). Separation was achieved using acetonitrile, methanol and 100 mm ammonium acetate in water (32:3:65, v /v/v) on an Intersil®RP‐HPLC column (250 × 4.6 mm, 5 μm). A one‐step extraction was performed by simultaneous protein and phospholipids precipitation. Detection was done by tandem mass spectrometry. No relative matrix effect was observed. The method was linear (0.5–40 μg/mL for CRB, ESL and MHD and 0.05–4 μg/mL for OXC), accurate and selective. Recoveries were 64.41 ± 5.07, 45.62 ± 1.73, 61.41 ± 4.77 and 60.33 ± 1.36 for CRB, OXC, ESL and MHD, respectively. The method was successfully applied for TDM of AED.  相似文献   
3.
Recently, in silico models have been developed to predict drug pharmacokinetics. However, before application, they must be validated and, for that, information about structurally similar reference compounds is required. A chiral liquid chromatography method with ultraviolet detection (LC‐UV) was developed and validated for the simultaneous quantification of BIA 2–024, BIA 2–059, BIA 2–265, oxcarbazepine, eslicarbazepine (S‐licarbazepine) and R‐licarbazepine in mouse plasma and brain. Compounds were extracted by a selective solid‐phase extraction procedure and their chromatographic separation was achieved on a LiChroCART 250–4 ChiraDex column using a mobile phase of water–methanol (92:8, v/v) pumped at 0.7 mL/min. The UV detector was set at 235 nm. Calibration curves were linear (r2 ≥ 0.996) over the concentration ranges of 0.2–30 µg/mL for oxcarbazepine, eslicarbazepine and R‐licarbazepine; 0.2–60 µg/mL for the remaining compounds in plasma; and 0.06–15 µg/mL for all the analytes in brain homogenate. Taking into account all analytes at these concentration ranges in both matrices, the overall precision did not exceed 9.09%, and the accuracy was within ±14.3%. This LC‐UV method is suitable for carrying out pharmacokinetic studies with these compounds in mouse in order to obtain a better picture of their metabolic pathways and biodistribution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号