首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
化学   6篇
  2022年   2篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Liquid chromatography‐mass spectrometry (LC‐MS) method revealed the plasma metabolite profiles in major depressive disorder patients treated with escitalopram (ECTP) (n = 7). Depression severity was assessed according to the 17‐item Hamilton Depression Rating Scale. Metabolic profiles were derived from major depressive disorder subject blood samples collected after ECTP treatment. Blood plasma was separated and processed in order to effectively extract metabolites, which were then analyzed using LC‐MS. We identified 19 metabolites and elucidated their structures using LC‐tandem MS (LC‐MS/MS) combined with elemental compositions derived from accurate mass measurements. We further used online H/D exchange experiments to verify the structural elucidations of each metabolite. Identifying molecular metabolites may provide critical insights into the pharmacological and clinical effects of ECTP treatment and may also provide useful information informing the development of new antidepressant treatments. These detailed plasma metabolite analyses may also be used to identify optimal dose concentrations in psychopharmacotherapeutic treatment through drug monitoring, as well as forming the basis for response predictions in depressed subjects.  相似文献   
2.
In the present study, an effective high performance liquid chromatography–tandem mass spectrometric (HPLC/MS/MS) method was developed and validated to simultaneously determine bupropion (BUP), quetiapine (QUE) and escitalopram (ESC) in human plasma using carbidopa as the internal standard. Chromatographic separation was achieved on a Waters Sun Fire C18 column using reversed‐phase chromatography. The MS/MS experiment was performed in positive ion multiple reaction monitoring mode to produce product ions of m/z 240.3 → 184.2 for BUP, 384.2 → 253.1 for QUE, 325.3 → 109.3 for ESC and 227.2 → 181.2 for the internal standard. The method showed good linearity (R2 ≥ 0.997), precision (relative standard deviation ≤7.5%), satisfactory intra‐ and interday accuracy (88.4–113.0%) and acceptable extraction recovery (87.2–115.0%), matrix effect (84.5.5?108.7%) and stability (92.3?103.5%). The method was successfully applied to determine the concentrations of BUP, QUE and ESC in human plasma samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
3.
Despite the recent promising results of MDMA (3,4-methylenedioxy-methamphetamine) as a psychotherapeutic agent and its history of misuse, little is known about its molecular mode of action. MDMA enhances monoaminergic neurotransmission in the brain and its valuable psychoactive effects are associated to a dual action on the 5-HT transporter (SERT). This drug inhibits the reuptake of 5-HT (serotonin) and reverses its flow, acting as a substrate for the SERT, which possesses a central binding site (S1) for antidepressants as well as an allosteric (S2) one. Previously, we characterized the spatial binding requirements for MDMA at S1. Here, we propose a structure-based mechanistic model of MDMA occupation and translocation across both binding sites, applying ensemble binding space analyses, electrostatic complementarity, and Monte Carlo energy perturbation theory. Computed results were correlated with experimental data (r = 0.93 and 0.86 for S1 and S2, respectively). Simulations on all hSERT available structures with Gibbs free energy estimations (ΔG) revealed a favourable and pervasive dual binding mode for MDMA at S2, i.e., adopting either a 5-HT or an escitalopram-like orientation. Intermediate ligand conformations were identified within the allosteric site and between the two sites, outlining an internalization pathway for MDMA. Among the strongest and more frequent interactions were salt bridges with Glu494 and Asp328, a H-bond with Thr497, a π-π with Phe556, and a cation-π with Arg104. Similitudes and differences with the allosteric binding of 5-HT and antidepressants suggest that MDMA may have a distinctive chemotype. Thus, our models may provide a framework for future virtual screening studies and pharmaceutical design and to develop hSERT allosteric compounds with a unique psychoactive MDMA-like profile.  相似文献   
4.
Normal-phase and reversed-phase high-performance liquid chromatography methods for the separation of the active pharmaceutical ingredient escitalopram from its (R)-enantiomer impurity have been developed on the cellulose-based Chiralcel OJ-H chiral stationary phase. Both methods share two features: they use ethanol as a cosolvent and are able to give a complete enantioseparation without interference from other associated chiral impurities. With the green eluent mixture ethanol–water–diethylammine 70:30:0.1 (v/v/v), the resolution between escitalopram and (R)-enantiomer was 2.09 at 30°C. The limits of quantification for the (S) and (R) enantiomers were 4.5 and 3.8 μg mL−1, respectively.  相似文献   
5.
采用差示扫描量热法(DSC),根据DSC曲线利用纯度分析软件测定草酸艾司西酞普兰的纯度。对实验条件进行了优化,升温速率为4.0 K/min,称样量为2~3.2 mg。测得草酸艾司西酞普兰的纯度为99.17%,相对标准偏差为0.05%(n=6)。该法测定结果与非水滴定法测定结果(99.24%)基本一致。差示扫描量热法可用于测定草酸艾司西酞普兰纯度,方法操作简便、结果准确。  相似文献   
6.
A sensitive, rapid and simple liquid chromatography–electrospray ionization mass spectrometry (LC‐ESI‐MS/MS) method was developed for the quantitative determination of cyclobenzaprine in human plasma, to study the pharmacokinetic behavior of cyclobenzaprine capsule in healthy Chinese volunteers. With escitalopram as the internal standard (IS), sample pretreatment involved a one‐step liquid–liquid extraction using saturated sodium carbonate solution and hexane–diethyl ether (3:1, v/v). The separation was performed on an Ultimate XB‐CN column (150 × 2.1 mm, 5 µm). Isocratic elution was applied using acetonitrile–water (40:60, v/v) containing 10 m M ammonium acetate and 0.1% formic acid. The detection was carried out on a triple‐quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionization. The ion‐pairs including m/z 276.2–216.2 for cyclobenzaprine and m/z 325.2–109.1 for IS were used for monitoring. Linear calibration curves were obtained over the range of 0.049–29.81 ng/mL with the lower limit of quantification at 0.049 ng/mL. The intra‐ and inter‐day precision showed ≤6.5% relative standard deviation. The established method laid the groundwork for follow‐up studies and provided basis for the clinical administration of cyclobenzaprine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号