首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学   1篇
数学   2篇
  2023年   1篇
  2015年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The choice of the preconditioner is a key factor to accelerate the convergence of eigensolvers for large‐size sparse eigenproblems. Although incomplete factorizations with partial fill‐in prove generally effective in sequential computations, the efficient preconditioning of parallel eigensolvers is still an open issue. The present paper describes the use of block factorized sparse approximate inverse (BFSAI) preconditioning for the parallel solution of large‐size symmetric positive definite eigenproblems with both a simultaneous Rayleigh quotient minimization and the Jacobi–Davidson algorithm. BFSAI coupled with a block diagonal incomplete decomposition proves a robust and efficient parallel preconditioner in a number of test cases arising from the finite element discretization of 3D fluid‐dynamical and mechanical engineering applications, outperforming FSAI even by a factor of 8 and exhibiting a satisfactory scalability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
New algorithms for iterative diagonalization procedures that solve for a small set of eigen‐states of a large matrix are described. The performance of the algorithms is illustrated by calculations of low and high‐lying ionized and electronically excited states using equation‐of‐motion coupled‐cluster methods with single and double substitutions (EOM‐IP‐CCSD and EOM‐EE‐CCSD). We present two algorithms suitable for calculating excited states that are close to a specified energy shift (interior eigenvalues). One solver is based on the Davidson algorithm, a diagonalization procedure commonly used in quantum‐chemical calculations. The second is a recently developed solver, called the “Generalized Preconditioned Locally Harmonic Residual (GPLHR) method.” We also present a modification of the Davidson procedure that allows one to solve for a specific transition. The details of the algorithms, their computational scaling, and memory requirements are described. The new algorithms are implemented within the EOM‐CC suite of methods in the Q‐Chem electronic structure program. © 2014 Wiley Periodicals, Inc.  相似文献   
3.
Gradient-type iterative methods for solving Hermitian eigenvalue problems can be accelerated by using preconditioning and deflation techniques. A preconditioned steepest descent iteration with implicit deflation (PSD-id) is one of such methods. The convergence behavior of the PSD-id is recently investigated based on the pioneering work of Samokish on the preconditioned steepest descent method (PSD). The resulting non-asymptotic estimates indicate a superlinear convergence of the PSD-id under strong assumptions on the initial guess. The present paper utilizes an alternative convergence analysis of the PSD by Neymeyr under much weaker assumptions. We embed Neymeyr's approach into the analysis of the PSD-id using a restricted formulation of the PSD-id. More importantly, we extend the new convergence analysis of the PSD-id to a practically preferred block version of the PSD-id, or BPSD-id, and show the cluster robustness of the BPSD-id. Numerical examples are provided to validate the theoretical estimates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号