首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17737篇
  免费   2305篇
  国内免费   935篇
化学   14298篇
晶体学   65篇
力学   2445篇
综合类   168篇
数学   1723篇
物理学   2278篇
  2024年   40篇
  2023年   124篇
  2022年   301篇
  2021年   378篇
  2020年   629篇
  2019年   519篇
  2018年   498篇
  2017年   716篇
  2016年   969篇
  2015年   810篇
  2014年   853篇
  2013年   1487篇
  2012年   1112篇
  2011年   1068篇
  2010年   957篇
  2009年   1048篇
  2008年   1046篇
  2007年   1047篇
  2006年   985篇
  2005年   888篇
  2004年   897篇
  2003年   741篇
  2002年   553篇
  2001年   395篇
  2000年   339篇
  1999年   333篇
  1998年   285篇
  1997年   270篇
  1996年   258篇
  1995年   221篇
  1994年   202篇
  1993年   190篇
  1992年   188篇
  1991年   110篇
  1990年   89篇
  1989年   60篇
  1988年   73篇
  1987年   49篇
  1986年   38篇
  1985年   38篇
  1984年   37篇
  1983年   14篇
  1982年   38篇
  1981年   20篇
  1980年   6篇
  1979年   7篇
  1978年   9篇
  1977年   9篇
  1975年   6篇
  1957年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Thin films with a nanometer-scale thickness are of great interest to both scientific and industrial communities due to their numerous applications and unique behaviors different from the bulk. However, the understanding of thin-film mechanics is still greatly hampered due to their intrinsic fragility and the lack of commercially available experimental instruments. In this review, we first discuss the progression of thin-film mechanical testing methods based on the supporting substrate: film-on-solid substrate method, film-on-water tensile tests, and water-assisted free-standing tensile tests. By comparing past studies on a model polymer, polystyrene, the effect of different substrates and confinement effect on the thin-film mechanics is evaluated. These techniques have generated fruitful scientific knowledge in the field of organic semiconductors for the understanding of structure–mechanical property relationships. We end this review by providing our perspective for their bright prospects in much broader applications and materials of interest.  相似文献   
2.
The dielectric properties of coordination polymers has been a topic of recent interest, but the role of different functional groups on the dielectric properties of these polymers has not yet been fully addressed. Herein, the effects of electron-donating (R=NH2) and electron-withdrawing (R=NO2) groups on the dielectric behavior of such materials were investigated for two thermally stable and guest-free Zn-based coordination polymers, [Zn(L1)(L2)]n ( 1 ) and [Zn(L1)(L3)]n ( 2 ) [L1=2-(2-pyridyl) benzimidazole (Pbim), L2=5-aminoisophthalate (Aip), and L3=5-nitroisophthalate (Nip)]. The results of dielectric studies of 1 revealed that it possesses a high dielectric constant (κ=65.5 at 1 kHz), while compound 2 displayed an even higher dielectric constant (κ=110.3 at 1 kHz). The electron donating and withdrawing effects of the NH2 and NO2 substituents induce changes in the polarity of the polymers, which is due to the inductive effect from the aryl ring for both NO2 and NH2. Theoretical results from density functional theory (DFT) calculations, which also support the experimental findings, show that both compounds have a distinct electronic behavior with diverse wide bandgaps. The significance of the current work is to provide information about the structure-dielectric property relationships. So, this study promises to pave the way for further research on the effects of different functional groups on coordination polymers on their dielectric properties.  相似文献   
3.
《Mendeleev Communications》2022,32(4):507-509
We report on the synthesis of new Ru(bpy)2(phen) catalyst for the oscillatory Belousov–Zhabotinsky chemical reaction and on the preparation of novel Ru(bpy)2(phen)-based self-oscillating gels. The synthesized gels exhibit high-amplitude autonomous mechanical oscillations when the Belousov–Zhabotinsky reaction proceeds inside these gels  相似文献   
4.
5.
The Pd‐catalyzed polycondensation of 4‐octylaniline with various dibromoarylenes was carried out under microwave heating. Microwave heating led to a decrease in the reaction time and an increase in the molecular weight of the polymers as compared to conventional heating. Microwave heating also allowed the catalyst loading to be reduced to 1 mol %, yielding polymerization results that were comparable to those under conventional heating and 5 mol % catalyst. Investigations regarding field‐effect transistors and organic photovoltaic cells using the obtained poly(arylamine) with azobenzene units revealed that increasing the molecular weight of the polymer led to improved device performance, including hole mobility and power conversion efficiency. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 536–542  相似文献   
6.
The development of synthetic routes which lead to five new diisocyanide monomers with one or two phenolic groups is described. Their polymerization behavior is studied with Pd‐ and Ni‐based initiators, as well as under microwave irradiation. The polymerizability is mainly dominated by steric effects as is concluded from experiments using different protecting groups. Chiroptical properties of these new polymers are studied by CD‐spectroscopy. After deprotection, helically chiral poly(quinoxalin‐2,3‐diyl)s are obtained which display a Brønsted function attached to a stereolabile biaryl axis whose configuration should be influenced by the chiral polymer backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1320–1329  相似文献   
7.
With a vast, synthetically accessible compositional space and highly tunable hydrolysis rates, poly(β-amino ester)s (PBAEs) are an attractive degradable polymer platform. Leveraging PBAEs in a wide range of applications hinges on the ability to program degradation, which, thus far, has been frustrated by multiple confounding phenomena contributing to the degradation of these charged polyesters. Basic conditions accelerate hydrolysis, yet reduce solubility, limiting water access to amines and esters. Further, the high buffering capacity of PBAEs can render buffers ineffective at controlling solution pH. To unify understanding of PBAE degradation and solution properties, this study examines PBAE hydrolysis as a function of pH and buffer concentration as well as polymer hydrophobicity. At low buffer concentrations, the PBAE amines and the acid produced during hydrolysis control solution pH. Meanwhile, at high buffer concentrations that afford relatively constant pH, hydrolysis rate increases with pH, despite the reduced PBAE solubility. Increasing the hydrophobic content of PBAEs eventually hinders the capacity of the polymer to accept protons from solution, limiting the pH increase and slowing hydrolysis. These studies showcase the role of buffering on the pH-dependent degradation and solution properties of PBAEs, providing guidance for programming degradation in applications ranging from drug delivery to thermosets.  相似文献   
8.
The random copolymerization of norbornene-functionalized macromonomers was explored as a method of synthesizing mixed-graft block copolymers (mGBCPs). The copolymerization kinetics of a model system of polystyrene (PS) and poly(lactic acid) (PLA) macromonomers was first analyzed, revealing a gradient composition of side chains along the mGBCP backbone. The phase separation behavior of mGBCPs with PS and PLA side chains of various backbone lengths and side chain molar ratios was investigated, and increasing the backbone length was found to stabilize the phase-separated nanostructures. The graft architecture was also demonstrated to improve the processability of the mGBCP, compared to a linear counterpart. Investigations of mGBCPs comprised of polydimethylsiloxane and poly(ethylene oxide) side chains exemplified the diverse self-assembled morphologies, including a Frank-Kasper A15 phase, that can be obtained with mGBCPs synthesized by random copolymerization of macromonomers. Lastly, a ternary mGBCP was synthesized by the copolymerization of three macromonomers.  相似文献   
9.
The structure and rotational barrier for the mesityl-silicon bond of 2,2-dimesityl-1,1,1,3,3,3-hexamethyltrisilane have been investigated by 1H- and 13C-variable temperature nuclear magnetic resonance (NMR) as well as by density functional theory structural calculations. The calculations show that the lowest energy structure has C2 symmetry with nonequivalent ortho methyl groups, consistent with the crystal structure and solution NMR. The nonequivalent ortho methyl groups exchange through a Cs transition state with a calculated relative free energy of 11.0 kcal mol−1. The barrier for this rotation found by dynamic NMR is 13.4 ± 0.2 kcal mol−1 at 298 K.  相似文献   
10.
The accumulated knowledge regarding molecular architectures is based on established, reliable, and accessible analytical tools that provide robust structural and functional information on assemblies. However, both the dynamicity and low population of noncovalently interacting moieties within studied molecular systems limit the efficiency and accuracy of traditional methods. Herein, the use of a saturation transfer-based NMR approach to study the dynamic binding characteristics of an anion to a series of synthetic receptors derived from bambusuril macrocycles is demonstrated. The exchange rates of BF4 are mediated by the side chains on the receptor (100 s−1<kex<5000 s−1), which play a critical role in receptor-anion binding dynamics. The signal amplification obtained with this approach allows for the identification of different types of intermolecular interactions between the receptor and the anion, something that could not have been detected by techniques hitherto used to study molecular assemblies. These findings, which are supported by a computational molecular dynamic study, demonstrate the uniqueness and added value of this NMR method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号