首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   17篇
物理学   2篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2013年   2篇
  2005年   1篇
  2002年   1篇
  2000年   2篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
The title compound was synthesized and structurally characterized. Theoretical IR, NMR (with the GIAO technique), UV, and nonlinear optical properties (NLO) in four different solvents were calculated for the compound. The calculated HOMO–LUMO energies using time-dependent (TD) DFT revealed that charge transfer occurs within the molecule, and probable transitions in the four solvents were identified. The in silico absorption, distribution, metabolism, and excretion (ADME) analysis was performed in order to determine some physicochemical, lipophilicity, water solubility, pharmacokinetics, drug-likeness, and medicinal properties of the molecule. Finally, molecular docking calculation was performed, and the results were evaluated in detail.  相似文献   
2.
The new drug discovery paradigm is based on high-throughput technologies, both with respect to synthesis and screening. The progression HTS hits lead series candidate drug marketed drug appears to indicate that the probability of reaching launched status is one in a million. This has shifted the focus from good quality candidate drugs to good quality leads. We examined the current trends in lead discovery by comparing MW (molecular weight), LogP (octanol/water partition coefficient, estimated by Kowwin [17]) and LogSw (intrinsic water solubility, estimated by Wskowwin [18]) for the following categories: 62 leads and 75 drugs [11]; compounds in the development phase (I, II, III and launched), as indexed in MDDR; and compounds indexed in medicinal chemistry journals [ref. 20], categorized according to their biological activity. Comparing the distribution of the above properties, the 62 lead structures show the lowest median with respect to MW (smaller) and LogP (less hydrophobic), and the highest median with respect to LogSw (more soluble). By contrast, over 50% of the medicinal chemistry compounds with activities above 1 nanomolar have MW > 425, LogP > 4.25 and LogSw < -4.75, indicating that the reported active compounds are larger, more hydrophobic and less soluble when compared to time-tested quality leads. In the MDDR set, a progressive constraint to reduce MW and LogP, and to increase LogSw, can be observed when examining trends in the developmental sequence: phase I, II, III and launched drugs. These trends indicate that other properties besides binding affinity, e.g., solubility and hydrophobicity, need to be considered when choosing the appropriate leads.  相似文献   
3.
4.
Cardiovascular disorders (CVDs) are the leading risk factor for death worldwide, and research into the processes and treatment regimens has received a lot of attention. Tilianin is a flavonoid glycoside that can be found in a wide range of medicinal plants and is most commonly obtained from Dracocephalum moldavica. Due to its extensive range of biological actions, it has become a well-known molecule in recent years. In particular, numerous studies have shown that tilianin has cardioprotective properties against CVDs. Hence, this review summarises tilianin’s preclinical research in CVDs, as well as its mechanism of action and opportunities in future drug development. The physicochemical and drug-likeness properties, as well as the toxicity profile, were also highlighted. Tilianin can be a natural lead molecule in the therapy of CVDs such as coronary heart disease, angina pectoris, hypertension, and myocardial ischemia, according to scientific evidence. Free radical scavenging, inflammation control, mitochondrial function regulation, and related signalling pathways are all thought to play a role in tilianin’s cardioprotective actions. Finally, we discuss tilianin-derived compounds, as well as the limitations and opportunities of using tilianin as a lead molecule in drug development for CVDs. Overall, the scientific evidence presented in this review supports that tilianin and its derivatives could be used as a lead molecule in CVD drug development initiatives.  相似文献   
5.
Glioblastoma multiforme (GBM) represents the most malignant type of astrocytoma, with a life expectancy of two years. It has been shown that Poly (ADP-ribose) polymerase 1 (PARP-1) protein is over-expressed in GBM cells, while its expression in healthy tissue is low. In addition, perezone, a phyto-compound, is a PARP-1 inhibitor with anti-neoplastic activity. As a consequence, in the present study, both in vitro and computational evaluations of perezone and its chemically related compound, perezone angelate, as anti-GBM agents were performed. Hence, the anti-proliferative assay showed that perezone angelate induces higher cytotoxicity in the GBM cell line (U373 IC50 = 6.44 μM) than perezone (U373 IC50 = 51.20 μM) by induction of apoptosis. In addition, perezone angelate showed low cytotoxic activity in rat glial cells (IC50 = 173.66 μM). PARP-1 inhibitory activity (IC50 = 5.25 μM) and oxidative stress induction by perezone angelate were corroborated employing in vitro studies. In the other hand, the performed docking studies allowed explaining the PARP-1 inhibitory activity of perezone angelate, and ADMET studies showed its probability to permeate cell membranes and the blood–brain barrier, which is an essential characteristic of drugs to treat neurological diseases. Finally, it is essential to highlight that the results confirm perezone angelate as a potential anti-GBM agent.  相似文献   
6.
Drug discovery and development research is undergoing a paradigm shift from a linear and sequential nature of the various steps involved in the drug discovery process of the past to the more parallel approach of the present, due to a lack of sufficient correlation between activities estimated by in vitro and in vivo assays. This is attributed to the non-drug-likeness of the lead molecules, which has often been detected at advanced drug development stages. Thus a striking aspect of this paradigm shift has been early/parallel in silico prioritization of drug-like molecular databases (also database pre-processing), in addition to prioritizing compounds with high affinity and selectivity for a protein target. In view of this, a drug-like database useful for virtual screening has been created by prioritizing molecules from 36 catalog suppliers, using our recently derived binary QSAR based drug-likeness model as a filter. The performance of this model was assessed by a comparative evaluation with respect to commonly used filters implemented by the ZINC database. Since the model was derived considering all the limitations that have plagued the existing rules and models, it performs better than the existing filters and thus the molecules prioritized by this filter represent a better subset of drug-like compounds. The application of this model on exhaustive subsets of 4,972,123 molecules, many of which have passed the ZINC database filters for drug-likeness, led to a further prioritization of 2,920,551 drug-like molecules. This database may have a great potential for in silico virtual screening for discovering molecules, which may survive the later stages of the drug development research.  相似文献   
7.
A facile green synthesis ball milling technique was used to prepare series of oxo-N'-(1-(pyridin-2-yl) ethylidene)-3-(thiazol-2-ylamino)propanehydrazide (H2L) complexes with UO2(II), Co(II), Cu(II), Pd(II) and Zn(II) ions. The configuration of isolated compounds was established based on spectroscopic, analytical as well as conformational techniques. Material-studio package was applied to propose the most suitable atomic-distribution within the ligand and its complexes via DFT method. The octahedral geometry was proposed for all complexes through poly-dentate coordinating ligand. Series of conductometric-titrations for the ligand versus CuSO4 was carried out to estimate the formed molar-ratio and constants of association & formation. To strengthen in-vitro study, structural-property relationship (drug-likeness) was applied, the data suggested the high biological efficiency of tested compounds. On the other hand, a simulation approach through MOE software was also conducted for the ligand and its Zn(II) complex against four pathogen proteins. This to recognize the magnitude of similarity between data exported in-silico as well as in-vitro assay, which already done. The best inhibition was recorded with H2L-1p3j, H2L-1cca, Zn(II)complex-1cca complexes. Concerning the ligand and its complexes, the in-vitro study has been achieved for anti-oxidant, antimicrobial, as well as cytotoxic assay.  相似文献   
8.
Several natural products (NPs) have displayed varying in vitro activities against methicillin-resistant Staphylococcus aureus (MRSA). However, few of these compounds have not been developed into potential antimicrobial drug candidates. This may be due to the high cost and tedious and time-consuming process of conducting the necessary preclinical tests on these compounds. In this study, cheminformatic profiling was performed on 111 anti-MRSA NPs (AMNPs), using a few orally administered conventional drugs for MRSA (CDs) as reference, to identify compounds with prospects to become drug candidates. This was followed by prioritizing these hits and identifying the liabilities among the AMNPs for possible optimization. Cheminformatic profiling revealed that most of the AMNPs were within the required drug-like region of the investigated properties. For example, more than 76% of the AMNPs showed compliance with the Lipinski, Veber, and Egan predictive rules for oral absorption and permeability. About 34% of the AMNPs showed the prospect to penetrate the blood–brain barrier (BBB), an advantage over the CDs, which are generally non-permeant of BBB. The analysis of toxicity revealed that 59% of the AMNPs might have negligible or no toxicity risks. Structure–activity relationship (SAR) analysis revealed chemical groups that may be determinants of the reported bioactivity of the compounds. A hit prioritization strategy using a novel “desirability scoring function” was able to identify AMNPs with the desired drug-likeness. Hit optimization strategies implemented on AMNPs with poor desirability scores led to the design of two compounds with improved desirability scores.  相似文献   
9.
ABSTRACT

Fraction Lipophilicity Index (FLI) was developed as a metric for assessing drug likeness of ionizable oral drugs. Considering that both log P and log D have distinct roles in drug action, the metric FLI allocates lipophilicity to a pH dependent neutral fraction of the molecule and is a weighted combination of log P and log D. It is expressed by equation: FLI = 2 x log P–│log D│. A dataset of 368 basic and acidic drugs was analyzed. Based on available % absorption data, drugs were classified into class 1 (268 drugs) and class 2 (100 drugs). The freeware MedChem Designer was used for log P and log D calculations at pH 7.4 and pH 5.5 for acids. Based on class 1, a drug-like FLI range 0–8 was defined. FLI distribution for class 2 is shifted towards significantly lower values. Comparison of FLI with rule of 5 (Ro5) shows that it leads to fewer values outside the established range than the corresponding log P violations for class 1. For class 2 it gives more alerts than Ro5 and can be considered complementary to Ro5, while it also sets lower limits to discriminate drugs with poor absorption.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号