首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6038篇
  免费   718篇
  国内免费   502篇
化学   5539篇
晶体学   29篇
力学   117篇
综合类   66篇
数学   947篇
物理学   560篇
  2024年   13篇
  2023年   114篇
  2022年   430篇
  2021年   409篇
  2020年   399篇
  2019年   261篇
  2018年   226篇
  2017年   272篇
  2016年   380篇
  2015年   324篇
  2014年   378篇
  2013年   478篇
  2012年   373篇
  2011年   348篇
  2010年   316篇
  2009年   341篇
  2008年   319篇
  2007年   328篇
  2006年   333篇
  2005年   248篇
  2004年   213篇
  2003年   151篇
  2002年   84篇
  2001年   68篇
  2000年   60篇
  1999年   86篇
  1998年   51篇
  1997年   43篇
  1996年   35篇
  1995年   31篇
  1994年   22篇
  1993年   15篇
  1992年   9篇
  1991年   18篇
  1990年   7篇
  1989年   11篇
  1988年   15篇
  1987年   2篇
  1986年   9篇
  1985年   3篇
  1984年   8篇
  1982年   4篇
  1981年   7篇
  1980年   2篇
  1979年   3篇
  1977年   4篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有7258条查询结果,搜索用时 15 毫秒
1.
Samples of oxidized cellulose (OC) with various carboxyl contents and degrees of crystallinity were obtained by the oxidation of native and mercerized cellulose with a solution of nitrogen(IV) oxide in CCl4. A detailed characterization of these OC samples was performed. The effect of oxidation conditions (concentration of N2O4 in the solution and oxidation time) and starting cellulose material on OC characteristics (carboxyl, carbonyl and nitrogen content, degree of crystallinity and polymerization, surface area and swelling, and acidic properties) was investigated. Reactivity in the oxidation process was higher in mercerized cellulose than in native cellulose. The action of dilute solutions (10–15%) of N2O4 did not affect the degree of crystallinity of cellulose samples. Under these conditions, the oxidation took place mainly in amorphous regions and on the surface of crystallites. Oxidation in a concentrated (40%) N2O4 solution led to the destruction of crystallites, which increased the surface area and swelling of cellulose in water. The surface area and the swelling of OC samples increased with a decrease in the index of crystallinity. The acidic properties of OC were shown to increase with an increase of swelling in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4785–4791, 2004  相似文献   
2.
A series of novel multifunctional hydrogels that combined the merits of both thermoresponsive and biodegradable polymeric materials were designed, synthesized, and characterized. The hydrogels were copolymeric networks composed of N‐isopropylacrylamide (NIPAAM) as a thermoresponsive component, poly(L‐lactic acid) (PLLA) as a hydrolytically degradable and hydrophobic component, and dextran as an enzymatically degradable and hydrophilic component. The chemical structures of the hydrogels were characterized by an attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR) technique. The hydrogels were thermoresponsive, showing a lower critical solution temperature (LCST) at approximately 32 °C, and their swelling properties strongly depended on temperature changes, the balance of the hydrophilic/hydrophobic components, and the degradation of the PLLA component. The degradation of the hydrogels caused by hydrolytic cleavage of ester bonds in the PLLA component was faster at 25 °C below the LCST than at 37 °C above the LCST, determined by the ATR–FTIR technique. Due to their multifunctional properties, the designed hydrogels show great potential for biomedical applications, including drug delivery and tissue engineering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5054–5066, 2004  相似文献   
3.
介绍了国外计算机图形学界对织物变形形态的研究现状.按建模原理分为几何方法。物理方法及综合方法.  相似文献   
4.
5.
The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.  相似文献   
6.
Factor Xa is a serine protease which activates thrombin and plays a key regulatory role in the blood-coagulation cascade. Factor Xa is at the crossroads of the extrinsic and intrinsic pathways of coagulation and, hence, has become an important target for the design of anti-thrombotics (inhibitors). It is not known to be involved in other processes than hemostasis and its binding site is different to that of other serine proteases, thus facilitating selective inhibition. The design of high-affinity selective inhibitors of factor Xa requires knowledge of the structural and dynamical characteristics of its active site. The three-dimensional structure of factor Xa was resolved by X-ray crystallography and refined at 2.2 Å resolution by Padmanabhan and collaborators. In this article we present results from molecular dynamics simulations of the catalytic domain of factor Xa in aqueous solution. The simulations were performed to characterise the mobility and flexibility of the residues delimiting the unoccupied binding site of the enzyme, and to determine hydrogen bonding propensities (with protein and with solvent atoms) of those residues in the active site that could interact with a substrate or a potential inhibitor. The simulation data is aimed at facilitating the design of high-affinity selective inhibitors of factor Xa.  相似文献   
7.
Functionality map analysis of the active site cleft of human thrombin   总被引:1,自引:0,他引:1  
Summary The Multiple Copy Simultaneous Search methodology has been used to construct functionality maps for an extended region of human thrombin, including the active site. This method allows the determination of energetically favorable positions and orientations for functional groups defined by the user on the three-dimensional surface of a protein. The positions of 10 functional group sites are compared with those of corresponding groups of four thrombin-inhibitor complexes. Many, but not all features, of known thrombin inhibitors are reproduced by the method. The results indicate that certain aspects of the binding modes of these inhibitors are not optimal. In addition, suggestions are made for improving binding by interaction with functional group sites on the thrombin surface that are not used by the thrombin inhibitors. Abbreviations: MCSS, multiple copy simultaneous search; PPACK, d-phenylalanyl-l-propyl-l-arginine chloromethane; NAPAP, N -(2-naphthylsulfonylglycyl)-d-para-amidinophenylalanylpiperidine; argatroban, (2R,4R)-4-methyl-1-[N -(3-methyl-1,2,3,4-tetrahydro-8-quinolinylsulfonyl)-l-arginyl]-2-piperidine carboxylic acid; rms, root mean square. The thrombin residues are numbered according to the chymotrypsin-based numbering by Bode et al. [8]. P1, P2, P3, etc., denote the peptide inhibitor residues on the amino-terminal side of the scissile peptide bond, and S1, S2, S3, etc., the corresponding subsites of thrombin  相似文献   
8.
Drug repurposing is a simple concept with a long history, and is a paradigm shift that can significantly reduce the costs and accelerate the process of bringing a new small-molecule drug into clinical practice. We attempted to uncover a new application of spiramycin, an old medication that was classically prescribed for toxoplasmosis and various other soft-tissue infections; specifically, we initiated a study on the anti-inflammatory capacity of spiramycin. For this purpose, we used murine macrophage RAW 264.7 as a model for this experiment and investigated the anti-inflammatory effects of spiramycin by inhibiting the production of pro-inflammatory mediators and cytokines. In the present study, we demonstrated that spiramycin significantly decreased nitric oxide (NO), interleukin (IL)-1β, and IL-6 levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Spiramycin also inhibited the expression of NO synthase (iNOS), potentially explaining the spiramycin-induced decrease in NO production. In addition, spiramycin inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs); extracellular signal-regulated kinase (ERK) and c-Jun N terminal kinase (JNK) as well as the inactivation and subsequent nuclear translocation of nuclear factor κB (NF-κB). This indicated that spiramycin attenuates macrophages’ secretion of IL-6, IL-1β, and NO, inducing iNOS expression via the inhibition of the NF-κB and MAPK signaling pathways. Finally, we tested the potential application of spiramycin as a topical material by human skin primary irritation tests. It was performed on the normal skin (upper back) of 31 volunteers to determine whether 100 μM and μM of spiramycin had irritation or sensitization potential. In these assays, spiramycin did not induce any adverse reactions. In conclusion, our results demonstrate that spiramycin can effectively attenuate the activation of macrophages, suggesting that spiramycin could be a potential candidate for drug repositioning as a topical anti-inflammatory agent.  相似文献   
9.
Pomacea canaliculata, one of the 100 most destructive invasive species in the world, and it is an important intermediate host of Angiostrongylus cantonensis. The molluscicides in current use are an effective method for controlling snails. However, most molluscicides have no slow-release effect and are toxic to nontarget organisms. Thus, these molluscicides cannot be used on a large scale to effectively act on snails. In this study, gelatin, a safe and nontoxic substance, was combined with sustained-release molluscicide and was found to reduce the toxicity of niclosamide to nontarget organisms. We assessed the effects of gelatin and molluscicide in controlling P. canaliculata snails and eggs. The results demonstrated that the niclosamide retention time with 1.0% and 1.5% gelatin sustained-release agents reached 20 days. Additionally, the mortality rate of P. canaliculata and their eggs increased as the concentration of the niclosamide sustained-release agents increased. The adult mortality rate of P. canaliculata reached 50% after the snails were exposed to gelatin with 0.1 mg/L niclosamide for 48 h. The hatching rate of P. canaliculata was only 28.5% of the normal group after the treatment was applied. The sustained-release molluscicide at this concentration was less toxic to zebrafish, which means that this molluscicide can increase the safety of niclosamide to control P. canaliculata in aquatic environments. In this study, we explored the safety of using niclosamide sustained-release agents with gelatin against P. canaliculata. The results suggest that gelatin is an ideal sustained-release agent that can provide a foundation for subsequent improvements in control of P. canaliculata.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号