首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  国内免费   1篇
化学   10篇
力学   5篇
物理学   6篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  1998年   1篇
  1993年   1篇
排序方式: 共有21条查询结果,搜索用时 312 毫秒
1.
Mushrooms have been used for millennia as cancer remedies. Our goal was to screen several mushroom species from the rainforests of Costa Rica, looking for new antitumor molecules. Mushroom extracts were screened using two human cell lines: A549 (lung adenocarcinoma) and NL20 (immortalized normal lung epithelium). Extracts able to kill tumor cells while preserving non-tumor cells were considered “anticancer”. The mushroom with better properties was Macrocybe titans. Positive extracts were fractionated further and tested for biological activity on the cell lines. The chemical structure of the active compound was partially elucidated through nuclear magnetic resonance, mass spectrometry, and other ancillary techniques. Chemical analysis showed that the active molecule was a triglyceride containing oleic acid, palmitic acid, and a more complex fatty acid with two double bonds. The synthesis of all possible triglycerides and biological testing identified the natural compound, which was named Macrocybin. A xenograft study showed that Macrocybin significantly reduces A549 tumor growth. In addition, Macrocybin treatment resulted in the upregulation of Caveolin-1 expression and the disassembly of the actin cytoskeleton in tumor cells (but not in normal cells). In conclusion, we have shown that Macrocybin constitutes a new biologically active compound that may be taken into consideration for cancer treatment.  相似文献   
2.
Cytoskeletal involvement in cotton fiber growth and development   总被引:1,自引:0,他引:1  
The organization of cellulose microfibrils in plant cell walls influences physical properties of the wall and thus cell expansion characteristics. Developing cotton fiber represents an excellent model system for the analysis of the biological regulation of cell wall patterns. Current research indicates that the cytoskeleton has a major role in directing the deposition and organization of cellulose microfibrils in the cell walls of many plant systems, including developing cotton fibers. Both microtubules and microfilaments appear to be involved in regulating changes observed in microfibril patterns during fiber development. The polylamellate architecture of the fiber wall can be attributed to changes in the orientation of cytoplasmic microtubules which appear to direct the orientation of microfibril deposition in each successive layer of the fiber wall. In the drug-induced absence of microtubules, cellulose is deposited in the fiber wall in a swirled pattern of bundled microfibrils. Interaction between adjacent microfibrils may influence cell wall organization on a localized level. In contrast to the direct involvement of microtubules on wall organization, microfilaments appear to be indirectly involved in the deposition of cellulose microfibrils. Current evidence indicates that microfilaments influence wall organization by controlling changes in microtubules patterns. Although a greater understanding of the relationship between the cytoskeleton and the fiber wall is needed, there is sufficient evidence to indicate that genetic manipulation of cytoskeletal components is one path toward future direct manipulation of cell expansion characteristic in many plant systems and may lead to improvements in the textile qualities of cotton fibers.  相似文献   
3.
Actin cytoskeleton has been known to control and/or be associated with chondrogenesis. Staurosporine and cytochalasin D modulate actin cytoskeleton and affect chondrogenesis. However, the underlying mechanisms for actin dynamics regulation by these agents are not known well. In the present study, we investigate the effect of staurosporine and cytochalasin D on the actin dynamics as well as possible regulatory mechanisms of actin cytoskeleton modulation. Staurosporine and cytochalasin D have different effects on actin stress fibers in that staurosporine dissolved actin stress fibers while cytochalasin D disrupted them in both stress forming cells and stress fiber-formed cells. Increase in the G-/F-actin ratio either by dissolution or disruption of actin stress fiber is critical for the chondrogenic differentiation. Cytochalasin D reduced the phosphorylation of cofilin, whereas staurosporine showed little effect on cofilin phosphorylation. Either staurosporine or cytochalasin D had little effect on the phosphorylation of myosin light chain. These results suggest that staurosporine and cytochalasin D employ different mechanisms for the regulation of actin dynamics and provide evidence that removal of actin stress fibers is crucial for the chondrogenic differentiation.  相似文献   
4.
Biomacromolecules like gelatin and chitosan have emerged as highly versatile biomimetic coatings for applications in tissue engineering. The elucidation of the interfacial kinetics of cell adhesion on biomacromolecular surfaces will pave the way for the rational design of chitosan/gelatin-based systems for cell regeneration. Biomacromolecular ultra-thin films, chemically immobilized on fused silica are ideal experimental models for determining the effect of surface properties on the biophysical cascades following cell seeding. In this study, confocal reflectance interference contrast microscopy (C-RICM), in conjunction with phase contrast microscopy and fluorescence confocal microscopy, was applied to detect the adhesion contact dynamics of 3T3 fibroblasts on chitosan and gelatin ultrathin films. X-ray photoelectron spectroscopy (XPS) confirmed the immobilization of chitosan or gelatin on the silanized glass surface. Both the initial cell deformation rate and the change of two-dimensional spread area of the 3T3 fibroblasts are higher on gelatin-modified surfaces than on chitosan surfaces. The steady-state adhesion energy of 3T3 fibroblasts on gelatin film is three times higher than that on chitosan film. Immuno-staining of actin further demonstrates the different organization of cytoskeleton, likely induced by the change in cell signaling mechanism on the two biomacromolecular surfaces. The better attachment of 3T3 fibroblast to gelatin is postulated to be caused by the presence of adhesive domains on gelatin.  相似文献   
5.
Curcumin is a well known natural polyphenol product isolated from the rhizome of the plant Curcuma longa, anti-inflammatory agent for arthritis by inhibiting synthesis of inflammatory prostaglandins. However, the mechanisms by which curcumin regulates the functions of chondroprogenitor, such as proliferation, precartilage condensation, cytoskeletal organization or overall chondrogenic behavior, are largely unknown. In the present report, we investigated the effects and signaling mechanism of curcumin on the regulation of chondrogenesis. Treating chick limb bud mesenchymal cells with curcumin suppressed chondrogenesis by stimulating apoptotic cell death. It also inhibited reorganization of the actin cytoskeleton into a cortical pattern concomitant with rounding of chondrogenic competent cells and down-regulation of integrin β1 and focal adhesion kinase (FAK) phosphorylation. Curcumin suppressed the phosphorylation of Akt leading to Akt inactivation. Activation of Akt by introducing a myristoylated, constitutively active form of Akt reversed the inhibitory actions of curcumin during chondrogenesis. In summary, for the first time, we describe biological properties of curcumin during chondrogenic differentiation of chick limb bud mesenchymal cells. Curcumin suppressed chondrogenesis by stimulating apoptotic cell death and down-regulating integrin-mediated reorganization of actin cytoskeleton via modulation of Akt signaling.  相似文献   
6.
王栋  张伟  蒋兴宇 《物理》2011,40(9):588-593
文章介绍了作者所在的实验小组近年来在用表面微纳米技术研究细胞生物学方面取得的进展.由于细胞的尺寸在数微米到数十微米之间,应用微纳米技术可以精细地调控细胞微观环境.作者所在的实验小组应用微流控系统以及表面化学修饰等方法,对细胞正常行为和病理行为进行了一系列研究.通过设计力学刺激装置,对细胞骨架的主要成分———肌动蛋白对细...  相似文献   
7.
李宝龙  龚景海 《力学季刊》2013,34(2):246-255
确定细胞骨架的结构和力学特性,建立和完善细胞骨架力学模型,是研究细胞在外界机械刺激下的复杂力学响应的关键。本文基于柔性结构设计中的找形分析,提出了一种新型的细胞骨架力学模型——找形模型。找形模型依靠随机理论生成模型中的单元,利用找形分析确定细胞模型的最终形状,模型更加接近真实的细胞骨架结构。与经典的细胞骨架力学模型(如泡沫模型、张力整合模型、索网模型等)相比,找形模型反映了细胞骨架结构的多样性和复杂性,符合细胞处于预应力状态的试验观测;找形模型计算出的细胞弹性模量为103Pa数量级,与大多数的细胞试验结果相符;另外,找形模型还可以分析细胞骨架组成成分的含量、几何尺寸和力学属性对细胞刚度的影响。  相似文献   
8.
Gastric cancer is a type of malignant tumor that seriously threatens human life and health. Invasion and metastasis present difficulties in the treatment of gastric cancer, and the remodeling of the tumor cytoskeleton plays an important role in mediating the ability of tumor cells to achieve invasion and metastasis. Previous experimental results suggest that Celastrus orbiculatus extract can regulate cytoskeletal remodeling in gastric cancer, but the active component has not been determined. Betulonic acid, as an effective component of COE, inhibits the invasion and metastasis of gastric cancer cells by regulating cytoskeletal remodeling in vitro; its specific mechanisms have been studied here. After betulonic acid was dissolved, it was diluted to various working concentrations in RPMI-1640 medium and added to AGS, HGC-27 and GES-1 cell lines. Cell viability was assessed by CCK-8 and colony formation assays. Cytoskeleton staining was used to detect changes in cytoskeleton morphology. Functional assays including wound healing assays and transwell assays were used to detect the invasion and migration of cells. The effect of betulonic acid on cell invasion and migration was clearly and precisely observed by high-content imaging technology. Western blotting was used to detect the regulation of matrix metalloproteinase-related proteins and epithelial–mesenchymal transformation-related proteins. We found that betulonic acid inhibited the migration and invasion of gastric cancer cells. Therefore, betulonic acid inhibits the invasion and metastasis of gastric cancer cells by mediating cytoskeletal remodeling and regulating epithelial mesenchymal transformation.  相似文献   
9.
CD98, a disulfide-linked 125-kDa heterodimeric type II transmembrane glycoprotein, regulates beta1 integrin- mediated cell adhesion. However, the molecular mechanisms underlying CD98-mediated activation of beta1 integrin are presently unclear. In this study, the effects of CD98 signaling on the expression and clustering of beta1 integrin were investigated. Activation of CD98 augmented surface expression of beta1 integrin on MCF-7 cells. Cross-linking CD98 induced clustering of beta1 integrins. Inhibition of phosphorylation of focal adhesion kimase (FAK) by PP2, an inhibitor of Src family kinase, reduced cell-extracellular matrix adhesion, but not surface expression and clustering of beta1 integrin on MCF-7 cells. This result was confirmed by over-expression of dominant negative forms of FAK. In addition, phalloidin or cytochalasin D inhibited CD98-mediated induction of cell-ECM adhesion, but not surface expression and clustering of beta1 integrins. The inhibitory effects of PP2, cytochalasin D or phalloidin on CD98-stimulated cell adhesion were diminished by pretreatment of cells with Mn2+, which is shown to induce conformational change of integrins. These results provide the first evidence that CD98 activation increases not only beta1 integrin affinity but also its surface expression and clustering and the latter is independent of FAK/Src and cytoskeleton.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号