首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
化学   9篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2006年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
A biomimetic system has been developed for the reductive dechlorination of tetrachloroethylene (PCE). PCE was dechlorinated to trichloroethylene (TCE) and 1,2-dichloroethylene (DCE) in the presence of dithiothreitol or Ti (III) citrate and catalytic amounts of cyanocobalamin in both homogeneous reaction mixtures and packed bed reactor systems. In packed bed reactors with Ti (III) citrate as the reductant, PCE (0.18 mM) conversion averaged 55% at residence times of 1.75 and 3.5 h. The product distribution was 94% TCE and 6% DCE at the lower residence time. DCE formation increased to 45% at the higher residence time. No reduction of PCE was observed in the absence of cyanocobalamin. This system may be useful as a means of pretreatment of halogenated aliphatic hydrocarbons in advance of biological treatment.  相似文献   
2.
《Electroanalysis》2006,18(22):2263-2268
We present the first electrochemical study in ionic liquid media of cyanocobalamin (vitamin B12), a biologically important molecule, and show its suitability as catalyst in the electroreduction of dibromoalkanes.  相似文献   
3.
A facile, rapid and ultra‐sensitive method for the determination of vitamin B12 (cyanocobalamin) at the sub‐nanomolar concentration range by using low‐cost, disposable graphite screen‐printed electrodes is described. The method is based on the cathodic preconcentration of square planar vitamin B12s, as occurred due to the electro reduction of Co(III) center in vitamin B12a to Co(I), at ?1.3 V versus Ag/AgCl/3 M KCl for 40 s. Then, an anodic square wave scan was applied and the height of the peak appeared at ca. ?0.73 V versus Ag/AgCl/3 M KCl, due to the oxidation of Co(I) to Co(II) in the adsorbed molecule, was related to the concentration of the vitamin B12 in the sample. EDTA was found to serve as a key‐component of the electrolyte by eliminating the background signal caused by metal cations impurities contained in the electrolyte (0.1 M phosphate buffer in 0.1 M KCl, pH 3). It also blocks trace metals contained in real samples, thus eliminating their interference effect. The method was optimized to various working parameters and under the selected conditions the calibration curve was linear over the range 1×10?10–8×10?9 mol L?1 vitamin B12 (R2=0.994), while the limit of detection for a signal‐to‐noise ratio of 3 (7×10?11 mol L?1 vitamin B12) is the lowest value of any reported in the literature for the electrochemical determination of vitamin B12. The sensors were successfully applied to the determination of vitamin B12 in pharmaceutical products.  相似文献   
4.
Cyanocobalamin (B12) is a photosensitive vitamin, and its photodegradation to hydroxocobalamin (B12b) in liposomes has been investigated. The values of apparent first-order rate constants (kobs) for the photodegradation of B12 in liposomes (nine preparations) are in the range of (0.52-2.24) × 10–3 min–1, compared to 3.21 × 10–3 min–1 for B12 in aqueous solution (pH 5.0). The entrapment efficiency of B12 in liposomes is 26.4-38.8%. The values of kobs show a linear relation with phosphatidylcholine (PC) content in liposomes, indicating the influence of PC in inhibiting the rate of photolysis of B12. The value of the bimolecular rate constant for photochemical interaction of B12 and PC is 0.32 M–1 min–1, indicating the stabilizing effect of PC on the photolysis of B12. The ratio of B12 stabilization in liposomal preparations is in the range 2-6 compared to that of the unentrapped vitamin The stabilization of B12 is mediated by a photoinduced charge-transfer B12-PC complex that leads to the reduction of B12 to B12r, which is then oxidized to B12b that has low susceptibility to photolysis. The extent of stabilization of B12 probably depends on the degree of interaction between the two compounds under the reaction conditions, indicated by the loss of B12 fluorescence.  相似文献   
5.
Several mobile phase additives (i.e., organic acids and their ammonium salts) were used to modulate the chromatographic retention of cyanocobalamin and its cis‐diaminemonochloroplatinum(II) conjugate, depending on the specific nature of the stationary phase. Regardless of the mobile phase additive, the positively charged cyanocobalamincis‐diaminemonochloroplatinum(II) conjugate was systematically less retained than cyanocobalamin on a conventional octadecyl‐silica column. In contrast, the amide‐embedded C18 column exhibited a progressive increase in the conjugate retention time upon changing the mobile phase additive from organic (acetic, formic and trifluoroacetic) acids to ammonium salts, ultimately leading to an inversion of the elution order. This change of retention was interpreted by invoking the interplay between hydrophobic interactions, hydrogen bonding between the conjugate and the polar amide groups and the ion‐pairing ability of the lyophilic counterions, whereby the acetate anion was found to be the most suitable to control the solute retention.  相似文献   
6.
A new solid-phase enzyme-linked competitive binding assay for vitamin B12 (cyanocobalamin) is described. The assay is based on the competition between analyte B12 molecules and a glucose-6-phosphate dehydrogenase-vitamin B12 conjugate for a limited number of R-protein binding sites immobilized on sepharose particles. After appropriate incubation and washing steps, the enzyme activity bound to the solid-phase is inversely related to the concentration of B12 in the sample. Under optimized conditions, the method can detect B12 in the range of 3×10–10–1×10–8 M (using 100l sample) with high selectivity over other biological molecules.  相似文献   
7.
Glutathionylcobalamin (GSCbl) is a vitamin B12 derivative that contains glutathione as the upper axial ligand to cobalt via a Co–S bond. In the present study, we discovered that cyanide reacted with GSCbl, generating cyanocobalamin (CNCbl) and reduced glutathione (GSH) via dicyanocobalamin (diCNCbl) intermediate. This reaction was induced specifically by the nucleophilic attack of cyanide anion displacing the glutathione ligand of GSCbl. Based on the reaction of GSCbl with cyanide, we developed new methods for the detection of cyanide. The reaction intermediate, violet-coloured diCNCbl, could be applied for naked eye detection of cyanide and the detection limit was estimated to be as low as 520 μg L?1 (20 μM) at pH = 10.0. The reaction product, CNCbl, could be applied for a spectrophotometric quantitative determination of cyanide with a detection limit of 26 μg L?1 (1.0 μM) at pH = 9.0 and a linear range of 26–520 μg L?1 (1.0–50 μM). In addition, the other reaction product, GSH, could be applied for a fluorometric quantitative determination of cyanide with a detection limit of 31 μg L?1 (1.2 μM) at pH = 9.0 and a linear range of 31–520 μg L?1 (1.2–20 μM). These new GSCbl-based methods are simple, highly specific and sensitive with great applicability for the detection of cyanide in biological and non-biological samples.  相似文献   
8.
The synthesis of cyclic carbonates from epoxides and carbon dioxide catalyzed by cyanocobalamin and n‐Bu4NI system was achieved under 0.8 MPa CO2 pressure at 140°C without organic solvents. Propylene carbonate was obtained in 99% yield within 6 h under the optimized reaction conditions. The cyanocobalamin catalyst could be recycled with water and retained moderate catalytic activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
9.
The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free‐base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography–MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号