首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   6篇
  国内免费   5篇
化学   77篇
综合类   1篇
物理学   2篇
  2022年   2篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2008年   4篇
  2007年   2篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
Nobuhiro Sato  Qi Yue 《Tetrahedron》2003,59(31):5831-5836
A one-pot procedure for the conversion of mono-substituted arenes and heteroarenes into the ortho-cyano derivatives was achieved through directed lithiation followed by electrophilic cyanation with phenyl cyanate. This reaction method proved to be applicable to halogen-lithium exchanged intermediates, so especially useful for the synthesis of benzonitriles. The scope of the reaction sequence was explored using a number of substrates.  相似文献   
2.
In this study, the viscoelastic phase separation process was studied further by time‐resolved light scattering, differential scanning calorimetry, and scanning electron microscopy in the system of poly(ether imide)‐modified bisphenol‐A dicyanate. It was observed that the evolution time of phase structure and relaxation time of diffusion flow of the bisphenol‐A dicyanate were similar with the phase diagram of curing conversion versus content of PEI. The results suggested that the viscoelastic phase separation was affected by the curing conversion of the system at the onset point of phase separation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 517–523, 2006  相似文献   
3.
酚醛型氰酸酯与双酚A型环氧共固化反应的FTIR研究   总被引:1,自引:0,他引:1  
在恒温固化条件下,通过FTIR跟踪方法,研究了酚醛型氰酸酯与双酚A型环氧共固化反应的路径及其反应机理.共固化体系的反应过程包括在150℃及其以下温度,主要发生的是氰酸酯的三嗪环化固化反应,其中三嗪环化固化反应由于环氧的加入,反应速率被极大地提高了;同时,酚醛型氰酸酯中的氨基甲酸酯类杂质与环氧发生开环聚合反应,引起环氧官能团产生弱而持续的消耗.但在此阶段,酚醛型氰酸酯与环氧之间没有化学反应发生;在180℃及其以上温度,三嗪环和环氧发生反应,异构为异氰脲酸环结构,并进一步反应生成唑啉酮环结构,由于该反应的发生,促进了环氧官能团的消耗速度,在环氧官能团的转化率-时间图中,出现倒S曲线;在三嗪环的转化率图中,出现一个极大值后再降落的曲线.反应温度的提高有利于促进酚醛型氰酸酯与环氧之间的共固化反应,特别是当反应温度为220℃时,氰酸酯官能团和环氧官能团的消耗、三嗪环和唑啉酮环的生成均以较快的速率进行,—OCN生成三嗪环的转化率可以较容易地达到1,而唑啉酮环的转化率不超过0.5.  相似文献   
4.
The synthesis and physical properties of new silicon‐containing polyfunctional cyanate ester monomers methyl[tris(4‐cyanatophenyl)]silane and tetrakis(4‐cyanatophenyl)silane, as well as polycyanurate networks formed from these monomers are reported. The higher crosslinking functionality compared to di(cyanate ester) monomers enables much higher ultimate glass transition temperatures to be obtained as a result of thermal cyclotrimerization. The ability to reach complete conversion is greatly enhanced by cocure of the new monomers with di(cyanate ester) monomers such as 1,1‐bis(4‐cyanatophenyl)ethane. The presence of silicon in these polycyanurate networks imparts improved resistance to rapid oxidation at elevated temperatures, resulting in char yields as high as 70% under nitrogen and 56% in air in the best‐performing networks. The water uptake in the silicon‐containing networks examined is 4–6 wt % after 96 h of immersion at 85 °C, considerably higher than both carbon‐containing and/or di(cyanate ester) analogs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 767–779  相似文献   
5.
《先进技术聚合物》2018,29(10):2574-2582
Ternary flame‐retardant modified cyanate ester blends (CEPG and CEPA) are formed by combining triazine compounds (TGIC or TAIC) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide with cyanate ester resin. The curing behaviors, thermal and mechanical properties, and the flame‐retardant properties are investigated. The results show that the CEPG and CEPA blends result in lower curing temperatures and glass transition temperatures than those of neat CE. Both of CEPG and CEPA blends significantly improve the flame‐retardant properties of CE resins, and UL‐94V‐0 rate is achieved for CEPG‐1.0 and CEPA‐0.5. The dielectric constant and loss of CEPA blends are lower than those of CEPG blend with the same phosphors content, and both of them are lower than those of neat CE. Therefore, the ternary flame‐retardant modified cyanate ester blends provide 2 ways for composites of producing printed circuit board with high flame‐retardant property and low dielectric constant and loss.  相似文献   
6.
We reveal a route for the preparation of phosphinated bisphenol, 1,1‐bis(4‐hydroxyphenyl)‐1‐(6‐oxido‐6H‐dibenz <c,e> <1,2> oxaphosphorin‐6‐yl)ethane (2) , via a one‐pot reaction of 1,1,1‐tris(4‐hydroxyphenyl)ethane and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide (DOPO) in the catalysis of p‐toluenesulfonic acid. A two‐step reaction mechanism, acid‐fragmentation of 1,1,1‐tris(4‐hydroxyphenyl)ethane followed by nucleophilic addition of DOPO, is proposed for the synthesis. Based on (2) , a dicyanate ester derivative, 1,1‐bis(4‐cyanatophenyl)‐1‐(6‐oxido‐6H‐dibenz <c,e> <1,2> oxaphosphorin‐6‐yl)ethane (3) was prepared and co‐cured with a commercially available dicyanate ester, the dicyanate ester of bisphenol A (BACY). Experimental data show that incorporating (3) into BACY enhances the flame retardancy and dielectric properties with little penalty to the thermal properties. A thermoset with Tg 274 °C, coefficient of thermal expansion (CTE) 49 ppm/°C, Dk 3.04 (1 GHz), Td (5%,) N2: 435 °C, air: 424 °C, and UL‐94 V‐0 rating can be achieved via this approach. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   
7.
The early cure behavior of 4,4‐dicyanato 1,1‐diphenolethane resin with and without incorporating Cr(acac)3, Co(acac)3, and Cu(acac)2, respectively, as catalysts was investigated by gel permeation chromatography. The curing intermediates were separated by the column elution method and characterized by Fourier transform infrared, 1H, and 3C NMR spectroscopies. The results indicated that the formed dimer in the early cure stage is a straight chain containing a primary amino group. The formed triazine ring in the trimer has a strong catalytic effect on the remaining cyanate groups so that the reactivity of the trimers was significantly increased. The reactivities of the curing intermediates decreased with molecular size until 7‐mer was reached. The initial monomer consumption is described by second‐order‐rate kinetics. In the presence of metal acetylacetonates, the curing reactions may be accelerated, but they did not change the reaction path and preceding sequence of reactivities. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3085–3092, 2001  相似文献   
8.
Viscoelastic ature is one of the key features of polymeric composites. A series of cyanate ester (CE)‐based composites with different aluminum nitride (AlN) contents for high performance electronic packaging, coded as AlN/CE, were developed; the viscoelastic nature of AlN/CE composites was intensively investigated by employing dynamic mechanical analysis (DMA). Results show that the AlN content has a great effect on dynamic mechanical properties of AlN/CE composites. The storage modulus in the glassy region increases linearly with the addition of AlN as well as the increase of AlN content. Meanwhile, all composites also exhibit notably higher loss modulus than cured CE resin due to the appearance of new energy dissipation forms. In addition, the incorporation of AlN has a significant effect on damping factor peak. All reasons leading to these phenomena are analyzed from the view of structure–property relationship. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
9.
《中国化学会会志》2018,65(5):554-560
Some less hindered 2,4,6‐tri‐aryloxy‐s‐triazines were synthesized through the reaction of the corresponding phenols as a starting materials with cyanogen bromide (BrCN) to obtain the corresponding arylcyanates and then trimerized. Unexpectedly, 2,4‐di‐tert‐butyl‐1‐cyanatobenzene derived from 2,4‐di‐tert‐butylphenol did not trimerize but, indeed, yielded bis(2,4‐di‐tert‐butylphenyl) carbonate. The structures of 2,4,6‐tri‐aryloxy‐s‐triazines and bis(2,4‐di‐tert‐butylphenyl) carbonate were characterized by means of IR, 1H, and 13C NMR spectroscopies. Also the structure of the latter compound was studied by X‐ray crystallography.  相似文献   
10.
Resin injection repair is a common method to repair delamination damage in polymer matrix composites (PMCs). To repair high-temperature PMCs, the resin should have a very low viscosity, yet cure into a compatible adhesive with high temperature stability. Normally, thermosetting polymers with high glass transition temperatures (T g) are made from monomers with high room temperature viscosities. Among the high temperature resins, bisphenol E cyanate ester (BECy, 1,1’-bis(4-cyanatophenyl)ethane), is unique because it has an extremely low viscosity of 0.09–0.12 Pa s at room temperature yet polymerizes as a cross-linked thermoset with a high T g of 274°C. BECy monomer is cured via a trimerization reaction, without volatile products, to form the high T g amorphous network. In this study, the cure kinetics of BECy is investigated by differential scanning calorimetry (DSC). Both dynamic and isothermal experiments were carried out to obtain the kinetic parameters. An autocatalytic model was successfully used to model isothermal curing. The activation energy from the autocatalytic model is 60.3 kJ mol−1 and the total reaction order is about 2.4. The empirical DiBenedetto equation was used to evaluate the relationship between T g and conversion. The activation energy of BECy from the dynamic experiments is 66.7 kJ mol−1 based on Kissinger’s method, while isoconversional analysis shows the activation energy changes as the reaction progresses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号