首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2022年   1篇
  2007年   2篇
  1985年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A new lignan, taiwanin H, has been isolated from the barks of Taiwania cryptomerioides Hayata and elucidated as formula ( 6a ) by chemical and physical evidence.  相似文献   
2.
The five new lignans designated 3′,4′‐de‐O‐methylenehinokinin ( 1 ), taiwaninolide ( 2 ), 8′‐hydroxysavinin ( 3 ), isoguamarol ( 4 ), and 4′‐O‐methylsalicifolin ( 5 ), as well as the new 4‐(3,4‐dimethoxybenzyl)dihydro‐3‐(4‐hydroxybenzyl)furan‐2(3H)‐one ( 6 ) were isolated from the roots of Taiwania cryptomerioides, besides the three known compounds hinokinin ( 8 ), savinin ( 9 ), and 3,4‐de‐O‐methylenehinokinin ( 7 ). The structures of the new constituents were elucidated through chemical and spectral studies. A compound previously isolated from the heartwood of Chamaecyparis obtusa var. formosana was assigned structure 1 ; however, this structure has now been revised to be 3,4‐de‐O‐methylenehinokinin ( 7 ).  相似文献   
3.
Six new cadinane‐type sesquiterpenes, (1β,4β,5α,10α)‐1,4‐epoxymuurolan‐5‐ol ( 1 ), (4α,10β)‐4,10‐dihydroxycadin‐1(6)‐en‐5‐one ( 2 ), (2β,3α,4β,6β)‐2,3‐dihydroxycadin‐1(10)‐en‐5‐one ( 3 ), (2β,3α)‐α‐corocalene‐2,3‐diol ( 4 ), (7S)‐α‐calacoren‐14‐ol ( 5 ), and (8β,9β,10β)‐8,9‐epoxycalamenene‐3,10‐diol ( 6 ) together with one known compound, (8β,9β,10β)‐8,9‐epoxycalamenen‐10‐ol ( 7 ), were isolated from the roots of Taiwania cryptomerioides. The structures of the new constituents were essentially elucidated by spectral evidence.  相似文献   
4.
Five new dimer compounds, namely Taiwaniacryptodimers A–E (1–5), were isolated from the methanol extract of the roots of Taiwania cryptomerioides. Their structures were established by mean of spectroscopic analysis and comparison of NMR data with those of known analogues. Their antifungal activities were also evaluated. Our results indicated that metabolites 1, 2, 4, and 5 displayed moderate antifungal activities against Aspergillus niger, Penicillium italicum, Candida albicans, and Saccharomyces cerevisiae.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号