首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   98篇
  国内免费   67篇
化学   456篇
晶体学   5篇
力学   9篇
综合类   3篇
数学   2篇
物理学   182篇
  2024年   2篇
  2023年   6篇
  2022年   20篇
  2021年   25篇
  2020年   16篇
  2019年   16篇
  2018年   14篇
  2017年   17篇
  2016年   43篇
  2015年   23篇
  2014年   25篇
  2013年   48篇
  2012年   37篇
  2011年   34篇
  2010年   28篇
  2009年   24篇
  2008年   23篇
  2007年   30篇
  2006年   27篇
  2005年   21篇
  2004年   16篇
  2003年   15篇
  2002年   19篇
  2001年   16篇
  2000年   11篇
  1999年   10篇
  1998年   19篇
  1997年   17篇
  1996年   12篇
  1995年   12篇
  1994年   8篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有657条查询结果,搜索用时 15 毫秒
1.
The formation and characterization of some interpolyelectrolyte complex (IPEC) nanoparticles based on poly(sodium 2‐acrylamido‐2‐methylpropanesulfonate) (NaPAMPS), as a function of the polycation structure, polyanion molar mass, and polyion concentration, were followed in this work. Poly(diallyldimethylammonium chloride) and two polycations (PCs) containing (N,N‐dimethyl‐2‐hydroxypropyleneammonium chloride) units in the backbone (PCA5 and PCA5D1) were used as starting polyions. The complex stoichiometry, (n?/n+)iso, was pointed out by optical density at 500 nm (OD500), polyelectrolyte titration, and dynamic light scattering. IPEC nanoparticle sizes were influenced by the polycation structure and polyanion molar mass only before the complex stoichiometry, which was higher for the more hydrophilic polycations (PCA5 and PCA5D1) and for a higher NaPAMPS molar mass, and were almost independent of these factors after that, at a flow rate of the added polyion of about 0.28 mL × (mL PC)?1 × h?1. The IPEC nanoparticle sizes remained almost constant for more than 2 weeks, both before and after the complex stoichiometry, at low concentrations of polyions. NIPECs as stable colloidal dispersions with positive charges in excess were prepared at a ratio between charges (n?/n+) of 0.7, and their storage colloidal stability, as a function of the polycation structure and polyion concentration (from 0.8 to ca. 7.8 mmol/L), was demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2495–2505, 2004  相似文献   
2.
This study critically examines the similarities and differences between poly(ethylene oxide) (PEO) stabilized latices of polynorbornene and polybutadiene. Features such as the kinetics of copolymerization of norbornene and cyclooctadiene with a macromonomer of PEO, the particles' size and morphology, the type of copolymer formed, and the stability of these latices were investigated and the results obtained are considered. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2705–2716, 2004  相似文献   
3.
The sterically stabilized emulsion polymerization of styrene initiated by a water‐soluble initiator at different temperatures has been investigated. The rate of polymerization (Rp) versus conversion curve shows the two non‐stationary‐rate intervals typical for the polymerization proceeding under non‐stationary‐state conditions. The shape of the Rp versus conversion curve results from two opposite effects—the increased number of particles and the decreased monomer concentration at reaction loci as the polymerization advances. At elevated temperatures the monomer emulsion equilibrates to a two‐phase or three‐phase system. The upper phase is transparent (monomer), and the lower one is blue colored, typical for microemulsion. After stirring such a multiphase system and initiation of polymerization, the initial coarse polymer emulsion was formed. The average size of monomer/polymer particles strongly decreased up to about 40% conversion and then leveled off. The initial large particles are assumed to be highly monomer‐swollen particles formed by the heteroagglomeration of unstable polymer particles and monomer droplets. The size of the “highly monomer” swollen particles continuously decreases with conversion, and they merge with the growing particles at about 40–50% conversion. The monomer droplets and/or large highly monomer‐swollen polymer particles also serve as a reservoir of monomer and emulsifier. The continuous release of nonionic (hydrophobic) emulsifier from the monomer phase increases the colloidal stability of primary particles and the number of polymer particles, that is, the particle nucleation is shifted to the higher conversion region. Variations of the square and cube of the mean droplet radius with aging time indicate that neither the coalescence nor the Ostwald ripening is the main driving force for the droplet instability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 804–820, 2003  相似文献   
4.
Core–shell microgels are of increasing interest as smart carriers of catalysts, as sensors, or as building blocks for colloidal superstructures. In the context of colloidal assemblies, photonic applications are probably the most promising ones. This progress report presents and discusses the most recent results in this area focusing on the last 2–3 years, and also gives some background information. In addition, potential perspectives of this area will be outlined. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1073–1083  相似文献   
5.
蓝鼎  王育人  于泳  马文杰  李程 《中国物理》2007,16(2):468-471
A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modification of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.  相似文献   
6.
Different colloidal particle characterization methods are examined for their suitability to determine the particle size distribution of particles extracted from steels. Microalloyed steels are dissolved to extract niobium and titanium carbonitride particles that are important for the mechanical properties of these steels. Such particles have sizes ranging from several nanometers to hundreds of nanometers depending on the precipitation stage during the thermomechanically controlled rolling process. The size distribution of the particles is analyzed by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and hollow fiber flow field-flow fractionation (HF5) and compared to data obtained for reference particles as well as data from electron microscopy, the standard sizing technique used in metallurgy today. AUC and HF5 provide high-quality size distributions, average over large particle numbers that enables statistical analysis, and yield useful insights for alloy design; however, DLS fails due to a lack of resolution. Important aspects in the conversion and comparison of size distributions obtained for broadly distributed particle systems with different measurement principles and the role of surfactants used in sample preparation are discussed.  相似文献   
7.
This study demonstrates how the method of thermally assisted oxidative precipitation in water can be opened for—the so far neglected—metal organic iron(II) complexes (herein: citrate) in order to obtain, in one step, ferromagnetic magnetite nanoparticles, possessing essential ligand properties. Based on a dedicated analysis of the specific precursor in combination with the consideration of known properties of the ligand, it is possible to identify existing inhibition-attributes of the iron organyl such that these can be overcome. Moreover, they can be exploited in a targeted manner; thus, simply by changing concentrations, a variety of magnetite nanoparticle morphologies with distinct properties can be obtained. In the case of the herein investigated ferrous citrate, three major inhibition effects are identified. While two of them efficiently prevent the formation of magnetite and need to be addressed to be overcome, the third can be exploited to selectively synthesize, for example, relatively stable carboxyl group-bearing nuclei clusters, exhibiting the properties of magnetically responsive photonic crystals, or relatively large mesocrystals, whose intraparticular magnetic interactions are apparently disturbed.  相似文献   
8.
Nanocomposites of waterborne polyurethane (WPU) reinforced with functionalized graphene sheets (FGSs) were effectively prepared by casting from a colloidal dispersion of FGS and WPU, and the morphology and physical properties were examined. The finer aqueous FGS dispersions or WPU with smaller particles yielded nanocomposites with enhanced electrical conductivity and thermal resistance due to finely dispersed FGS. The FGS nucleated the crystallization of the polycaprolactone (PCL) segments in WPU and improved its modulus. However, FGS inhibited crystal growth and deteriorated the tensile properties at high deformation, i.e., tensile strength and elongation at break, because the interaction between FGS and WPU hindered the chain rearrangement of WPU in the nanocomposite.  相似文献   
9.
蛋白石型光子晶体红外隐身材料的制备   总被引:2,自引:0,他引:2       下载免费PDF全文
基于光子晶体的红外隐身材料,主要采取一维层层堆叠结构和三维木堆结构等来实现对红外波段电磁波辐射性能的调控.本文报道了一种操作简易、成本低廉的光子晶体红外隐身材料制备方法.通过优化的垂直沉积法,微米级SiO_2胶体微球自组装成高质量的蛋白石型光子晶体结构.对SiO_2胶体微球进行优选,成功制备了禁带位于2.8—3.5μm,8.0—10.0μm的SiO_2胶体晶体蛋白石型光子晶体材料.该材料可改变目标相应波段的红外辐射特征,具有目标红外波段的隐身效果.  相似文献   
10.
A versatile and reliable approach is created to fabricate wafer-scale colloidal crystal that consists of a monolayer of hexagonally close-packed polystyrene(PS) spheres. Making wafer-scale colloidal crystal is usually challenging, and it lacks a general theoretical guidance for experimental approaches. To obtain the optimal conditions for self-assembly, a systematic statistical design and analysis method is utilized here, which applies the pick-the-winner rule. This new method combines spin-coating and thermal treatment, and introduces a mixture of glycol and ethanol as a dispersion system to assist self-assembly. By controlling the parameters of self-assembly, we improve the quality of colloidal crystal and reduce the effect of noise on the experiment. To our best knowledge, we are first to pave this path to harvest colloidal crystals.Importantly, a theoretical analysis using an energy landscape base on our process is also developed to provide insights into the PS spheres' self-assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号