首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
化学   18篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2002年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有18条查询结果,搜索用时 328 毫秒
1.
2.
An electropolymerization of haloalkylhalosilanes (Cl? R? SiCH3Cl2) that possess two types of electroactive sites, that is, the C? Cl and Si? Cl bond is described. The one‐pot synthesis method is shown to yield branched polycarbosilanes having a regular carbon block‐spaced silicon backbone structure. A series of branched polycarbosilanes, [? R? SiCH3? ]n with R being ? CH2? , ? C2H4? , ? C3H6? , and ? CH2? C6H4? C2H4? , have been successfully electropolymerized with Mn up to 42,600 Dalton. Experimental and simulation cyclic voltammetry of these monomers and the computational examination of their LUMOs are applied to study the electropolymerization mechanism. The results suggest that polymerization proceeds by iterating steps involving (1) electroreduction of a C? Cl bond to a carbanion, which is catalyzed by silylanion radical [Cl SiCl(CH3)RCl] and/or Ni(0)/TDA‐1; and (2) nucleophilic attack of carbanions to Si? Cl bonds of a second monomer or oligomer to extend the polymer chain. The investigation reveals that the R spacer has a considerable impact on the polymerizability of the corresponding monomer. Such interfacial polymerization resembles a template polymerization, leading to unique microstructures that were preserved even after converted to silicon carbide ceramics at high temperatures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7677–7689, 2008  相似文献   
3.
The kinetics of formation of a chlorosilane-linked polystyrene six-arm star is reported. The precursor arm material (Mn = 88,000) was made using anionic polymerization in benzene. Prior to addition to the 1,2-bis(trichlorosilyl) ethane linking agent, the anions were endcapped with about five units of isoprene. Size exclusion chromatography using multiangle laser light scattering and viscosity detectors was utilized for characterization. This technique has allowed the molecular weights, radii of gyration, and intrinsic viscosities to be measured for star components in aliquots taken from the reactor at various times. It was found that four-arm star is formed within 30 min after the addition of the chlorosilane linking agent. There is a linear relationship between the logarithm of molecular weight of the star samples and logarithm of time of the reaction after the formation of the four-arm star. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 587–594, 1997  相似文献   
4.
5.
New results are given regarding the mechanism of the chemical process of copper alloyed silicon with methyl chloride (the `direct process'). As indicated by Photo-EMF measurements, carried out with doped silicon samples the reactivity of silicon significantly depends on the type of the doping with elements like phosphorus (n-type) tin, boron, indium (p-type). In-situ trapping experiments with 2,3-dimethylbutadiene are consistent with the creation of silylene intermediates SiMeCl and SiCl2 . Theselectivity of their competitive insertion steps can be controlled by the doping type and concentrations of the doping elements, especially the phosphorus/tin ratio criterion. n-Type doping favors the silylene insertion into the C-Cl bond due to the electronic silylene stabilization on the silicon surface. In case of p-type doping silylene insertion into Si-Cl bond is favored more intensively leading to the formation of disilanes.  相似文献   
6.
Linear and cyclic permethyloligosilanes were prepared by the Wurtz-type cocondensation of chlorotrimethylsilane and dichlorodimethylsilane in the presence of sodium metal or samarium iodide as reducing agents. The yields and composition of the reaction products depend on the cocondensation conditions.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1520–1522, June, 1996.  相似文献   
7.
The synthesis of well‐defined 3‐ and 4‐miktoarm star copolymers of the A2B and A3B types is described, where A is 1,4‐polybutadiene and B is poly(1,3‐cyclohexadiene). The synthetic approach involves the reaction of poly(1,3‐cyclohexadienyl)lithium with an excess of methyltrichlorosilane or tetrachlorosilane followed, after the removal of excess silane, by a small excess of polybutadienyllithium. Characterization was carried out by size exclusion chromatography, low‐angle laser light scattering, laser differential refractometry, and NMR spectroscopy. The complete heterogeneous catalytic hydrogenation of the A2B and A3B miktoarm stars, with a calcium carbonate‐supported palladium catalyst, leads to the formation of A2B and A3B miktoarm stars with one amorphous polycyclohexylene arm with an extremely high glass‐transition temperature and two or three crystalline polyethylene arms. Differential scanning calorimetry was used to determine the glass‐transition temperature of the amorphous blocks of the starting and hydrogenated stars and the melting temperature of polyethylene. Solid‐state 13C NMR spectroscopy was performed to ensure the complete saturation of the polycyclohexadiene and polybutadiene arms. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2575–2582, 2002  相似文献   
8.
A series of novel four‐arm A2B2 and A2BC and five‐arm A2B2C miktoarm star polymers, where A is poly(dimethylsiloxane) (PDMS), B is polystyrene (PS), and C is polyisoprene (PI), were successfully synthesized by the combination of chlorosilane and benzyl chloride linking chemistry. This new and general methodology is based on the linking reaction of in‐chain benzyl chloride functionalized poly(dimethylsiloxane) (icBnCl–PDMS) with the in‐chain diphenylalkyl (icD) living centers of PS‐DLi‐PS, PS‐DLi‐PI, or (PS)2‐DLi‐PI. icBnCl–PDMS was synthesized by the selective reaction of lithium PDMS enolate (PDMSOLi) with the chlorosilane groups of dichloro[2‐(chloromethylphenyl)ethyl]methylsilane, leaving the benzyl chloride group intact. The icD living polymers, characterized by the low basicity of DLi to avoid side reactions with PDMS, were prepared by the reaction of the corresponding living chains with the appropriate chloro/bromo derivatives of diphenylethylene, followed by a reaction with BuLi or the living polymer. The combined molecular characterization results of size exclusion chromatography, 1H NMR, and right‐angle laser light scattering revealed a high degree of structural and compositional homogeneity in all miktoarm stars prepared. The power of this general approach was demonstrated by the synthesis of a morphologically interesting complex miktoarm star polymer composed of two triblock terpolymer (PS‐b‐PI‐b‐PDMS) and two diblock copolymer (PS‐b‐PI) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6587–6599, 2006  相似文献   
9.
Two UV‐curable hyperbranched poly(siloxysilane)s ( I and III ) containing vinyl and allyl end groups were synthesized via polyhydrosilylation with methylbis(methylethylvinylsiloxy)silane and methylbis(dimethylallylsiloxy)silane monomers. A cationic UV‐curable hyperbranched polymer ( II‐Ep ) with epoxy end groups was prepared via the hydrosilylation of hyperbranched polymer II with Si? H terminated groups and glycidyl methacrylate, and II was also obtained via the polyhydrosilylation of AB2‐type monomer methylvinylbis(methylethylsiloxy)silane. All hydrosilylation reactions were catalyzed by Pt/C or chloroplatinic acid. Three AB2‐type monomers were synthesized via the hydrolysis of functional chlorosilane, which was prepared with Grignard reagents and dichlorosilane. The molecular structures of the polymers were characterized with 1H NMR, Fourier transform infrared, and gel permeation chromatography, and the UV‐curing behaviors of the polymers under different atmospheres and with different photoaccelerators were also investigated. The thermostability of uncured and cured polymers was examined with thermogravimetric analysis, and the data indicated that the orders of the onset decomposition temperatures for the cured polymers and the residue weights were as follows: III (380 °C) > I (320 °C) > II‐Ep (280 °C) and I (70.4%) > III (64.1%) > II‐Ep (60.9%), respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1883–1894, 2005  相似文献   
10.
In this paper, the rate coefficients (k) and activation energies (Ea) for SiCl4, SiHCl3, and Si(CH3)2(CH2Cl)Cl molecules in the gas phase were measured using the pulsed Townsend technique. The experiment was performed in the temperature range of 298–378 K, and carbon dioxide was used as a buffer gas. The obtained k depended on temperature in accordance with the Arrhenius equation. From the fit to the experimental data points with function described by the Arrhenius equation, the activation energies (Ea) were determined. The obtained k values at 298 K are equal to (5.18 ± 0.22) × 10−10 cm3·s−1, (3.98 ± 1.8) × 10−9 cm3·s−1 and (8.46 ± 0.23) × 10−11 cm3·s−1 and Ea values were equal to 0.25 ± 0.01 eV, 0.20 ± 0.01 eV, and 0.27 ± 0.01 eV for SiHCl3, SiCl4, and Si(CH3)2(CH2Cl)Cl, respectively. The linear relation between rate coefficients and activation energies for chlorosilanes was demonstrated. The DFT/B3LYP level coupled with the 6-31G(d) basis sets method was used for calculations of the geometry change associated with negative ion formation for simple chlorosilanes. The relationship between these changes and the polarizability of the attaching center (αcentre) was found. Additionally, the calculated adiabatic electron affinities (AEA) are related to the αcentre.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号