首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  国内免费   10篇
化学   45篇
物理学   1篇
  2023年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2005年   3篇
  2003年   1篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1997年   1篇
  1996年   2篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
<正> 可溶性含酚酞侧基聚芳醚酮(PEK-C)是一种新型的具有耐高温、耐水解、耐化学腐蚀、自润滑性能的工程塑料,它具有如下结构:  相似文献   
2.
4-Fluorobenzophenone reacted with potassium carbonate in the presence of silica catalyst in diphenyl sulfone solvent to yield 4,4′-dibenzoyldiphenyl ether. This new etherification reaction was extended to three difluoro aromatic ketones. 4,4′-Bis(4-fluorobenzoyl)diphenyl ether ( I ) reacted with potassium carbonate to yield a crystalline poly(oxy-1,4-phenylene-carbonyl-1,4-phenylene) (PEK) and 4,4′-bis{4-[4-(4-fluorobenzoyl)phenoxy]benzoyl}benzene ( II ) gave a crystalline poly(oxy-1,4-phenylene-carbonyl-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene-carbonyl-1,4-phenylene)(PEKEKEKK). 2,8-Bis(4-fluorobenzoyl)dibenzofuran ( III ) or 2,8-bis(4-chlorobenzoyl)dibenzofuran ( IV ) reacted with potassium carbonate to yield a poly(oxy-1,4-phenylene-carbonyl-2,8-dibenzofuran-carbonyl-1,4-phenylene) (PEKBK). The PEKBK was a noval amorphous polymer with the glass transition temperature of 222°C and it showed excellent thermal stability [T. Tanabe and I. Fukawa, Jpn. Pat., Kokai 64–74223 (1989)]. Several amorphous dibenzofuran type polyetherketone copolymers were prepared by coplycondensation of III with 4,4′-difluorobenzophenone ( V ) or 1,4-bis(4-fluorobenzoyl)benzene ( VI ) [T. Tanabe and I. Fukawa, Jpn. Pat., Kokai 1153722 (1989)]. © 1992 John Wiley & Sons, Inc.  相似文献   
3.
<正>A novel polyamide containing xanthene structure and trifluoromethylphenoxy pendent was prepared from 9,9-bis[4-(4- aminophenoxy)phenyl]xanthene,a novel diamine with 2-(4-trifluoromethylphenoxy)terephthaloyl chloride,by the low temperature polycondensation.This new polyamide with the inherent viscosity of 0.95 dL/g was amorphous and readily soluble in polar solvents such as DMAc,m-cresol,etc.This polyamide showed the glass transition temperature(T_g) of 236℃,decomposition temperature (Td) at 5%weight loss of 455℃and char yield of 56%at 800℃in N_2.Transparent,flexible,and tough film of the polymer cast from DMAc solution exhibited tensile strength of 93 MPa,elongation at break of 14%,initial moduli of 2.2 GPa.The electric properties such as the dielectric constant of 3.03(1 MHz) and surface resistance(2.78×10~(14)Ω),and the moisture uptake of 1.36% were also described.  相似文献   
4.
Viscoelastic properties of urethane and ester conjugation cardo polymers that contain fluorene group, 9,9‐bis(4‐(2‐hydroxyethoxy)phenyl)fluorene (BPEF), were investigated. As for the urethane‐type cardo polymers containing BPEF in the main chain, it had a high glass‐transition temperature (Tg), which was observed as the α dispersion on viscoelastic measurement, and its temperature depended on the chemical structure of the spacing unit, such as toluene diisocyanate (TDI), 4,4′‐methylene diphenyl diisocyanate (MDI), methylene dicycloexyl diisocyanate (CMDI), and hexamethylene diisocyanate (HDI). Moreover, the Tg of urethane‐type cardo copolymers with various cardo contents increased with an increase of cardo content. Owing to the increase of Tg of cardo polymers, another molecular motion can be measured at the temperature between the α and β dispersion that was assigned to the molecular motion of urethane conjugation unit around 200 K, and it was referred to as the αsub dispersion. The peak temperature of the αsub dispersion was influenced by the chemical structure of the spacing unit, but it did not change for the cardo polymer containing the same spacing unit. Consequently, it was deduced that the αsub dispersion was originated in the subsegmental molecular motions of the cardo polymers. Ester‐type cardo polymer had higher Tg in comparison with noncardo polymer that consisted of dimethyl groups (BPEP) instead of BPEF as well. The αsub dispersion was also measured at the temperature between the α and β dispersion, which was assigned to the molecular motion of ester conjugation unit, around 220 K. For ester cardo polymer, the γ dispersion was measured in a low‐temperature region around 140 K, and it was due to a small unit motion in the ester‐type cardo polymers, such as ethoxyl unit, ? C2H4O? . Moreover, the intensity of the γ dispersion of noncardo polymer was higher than that of cardo polymer, which means the molecular motion was much restricted by the cardo structure of BPEF. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2259–2268, 2005  相似文献   
5.
Three bisphenols containing cardo perhydrocumyl cyclohexylidene group, namely; 1,1-bis(4-hydroxyphenyl)-4-perhydrocumylcyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)-4-perhydrocumylcyclohexane and 1,1-bis(4-hydroxy-3,5-dimethylphenyl)-4-perhydrocumylcyclohexane were synthesized starting from p-cumyl phenol. Each of these bisphenols was polycondensed with both terephthaloyl chloride and isophthaloyl chloride by phase transfer-catalyzed interfacial polymerization to obtain a series of new aromatic polyesters. Inherent viscosities and number average molecular weights of polyesters were in the range 0.51-0.64 dL/g and 17390-41430?g/mol, respectively which indicated the formation of reasonably high molecular weight polymers. The detailed NMR studies revealed that axial and equatorial identity of the phenyl rings of bisphenols was retained in polyesters resulting in constitutional isomerism. Polyesters containing perhydrocumyl cyclohexylidene groups showed excellent solubility in organic solvents viz, chloroform, dichloromethane, 1,1,2,2-tetrachloroethane and tetrahydrofuran. The self-standing films of polyesters could be cast from their chloroform solution. The 10% weight loss temperatures and glass transition temperatures of polyesters were in the range 453–485?°C and 201–267?°C, respectively demonstrating their excellent thermal characteristics. The gas permeability study of polyesters was carried out for He, H2 and N2 by variable-volume method. An improvement in permeability and decrease in selectivity was observed due to symmetric methyl substituents while reverse trend was observed in case of polyesters with asymmetric methyl substituents.  相似文献   
6.
In this paper, two novel bismaleimide resins based on 9, 9-bis[4-(4-maleimidophenoxy) phenyl] fluorene (PFBMI), 9, 9-bis[4-(4-maleimidophenoxy)-3-methylphenyl]fluorene (MFBMI), and 2, 2’-diallyl bisphenol A (DABPA) were prepared. Their curing mechanism and curing kinetic were carefully investigated by Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The thermal mechanical properties of the composites based on these BMI resins and the glass cloth were obtained by Dynamic mechanical analysis (DMA), displaying that the novel resins whose Tg were 296°C and 289°C had excellent thermal performance. In addition, Thermogravimetric analysis (TGA) results showed that both the cured PD and MD resins possessed good thermal stability, and their T5% were all higher than 410°C.  相似文献   
7.
A novel fluorenyl cardo dianhydride-9,9-bis[4-(3,4-dicarboxybenzoyloxy)phenyl]fluorene (BDPF) was synthesized and characterized. A series of fluorenyl cardo poly(ester-imide)s (FCPEIs) were prepared by the polycondensation of BDPF with m-phenylene diamine, 4,4′-oxydianiline (4,4′-ODA), 3,4′-oxydianiline (3,4′-ODA), 2,2-bis[4-(4-amino -phenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, and 1,6-hexamethylenediamine. Most of the FCPEIs exhibited excellent solubility in common organic solvents such as 1,2-dichlorobenzene (o-DCB), chloroform, tetrahydrofuran, N,N-dimethylacetamide (DMAc), dimethyl sulfoxide, N-methyl-2-pyrrolidinone, etc. Intrinsic viscosities of FCPEIs in DMAc, for instance, ranged from 0.29–0.52 dL/g. The glass transition temperature of these polymers was between 199°C and 283°C by differential scanning calorimentry, and the 5% weight loss temperature of all polymers exceeded 400°C in air.  相似文献   
8.
A new diamine, 2,2-bis[4-(4-aminophenoxy)phenyl]norbornane (BAPN), containing both ether and norbornane cardo groups, was synthesized in three steps started from norcamphor. A series of cardo polyamides were obtained by the direct polycondensation of BAPN and various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polyamides had inherent viscosities in the range of 0.82–1.58 dL g−1, and were readily soluble in polar aprotic solvents such as NMP, N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide and dimethyl sulfoxide. These polymers were cast in DMAc solution into transparent, flexible, and tough films that were further characterized by X-ray and mechanical analysis. All the polymers were amorphous, and the polyamide films had a tensile strength range of 71–89 MPa, an elongation at break range of 5–9%, and a tensile modulus range of 2.0–2.3 GPa. Polyamides showed glass transition temperatures in the range of 256–296°C as measured by DSC and thermogravimetric analysis indicated no weight loss below 450°C in nitrogen and air atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2791–2794, 1999  相似文献   
9.
A new cardo diamine monomer, 5,5-bis[4-(4-aminophenoxy)phenyl]-4,7-methanohexahydroindane (II), was prepared in two steps with high yield. The monomer was reacted with six different aromatic tetracarboxylic dianhydrides in N,N-dimethylacetamide (DMAc) to obtain the corresponding cardo polyimides via the poly(amic acid) precursors and thermal or chemical imidization. All the poly(amic acid)s could be cast from their DMAc solutions and thermally converted into transparent, flexible, and tough polyimide films which were further characterized by x-ray and mechanical analysis. All of the polymers were amorphous and the polyimide films had a tensile strength range of 89–123 MPa, an elongation at break range of 6–10%, and a tensile modulus range of 1.9–2.5 GPa. Polymers Vc, Ve, and Vf exhibited good solubility in a variety of solvents such as N-methyl-2-pyrrolidinone (NMP), DMAc, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridine, γ-butyrolactone, and even in tetrahydrofuran and chloroform. These polyimides showed glass-transition temperatures between 274 and 299°C and decomposition temperatures at 10% mass loss temperatures ranging from 490 to 521°C and 499 to 532°C in nitrogen and air atmospheres, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2815–2821, 1999  相似文献   
10.
无定型聚芳醚酮的氯甲基化改性   总被引:2,自引:2,他引:0  
采用硫酸作溶剂及催化剂,1,4-二氯甲氧基丁烷(BCMB)为氯甲基化试剂,在均相反应体系中对酚酞聚芳醚酮(PEK-C)进行氯甲基化改性。 采用无致癌性的BCMB作为氯甲基化试剂实现了环境友好,并且成本低,效率高。 试验结果表明,反应机理由苯环亲电取代与亲核取代2种反应构成。 为避免交联反应的发生,反应要在较低温度下进行(10~30 ℃)。 在此温度范围内可制得氯甲基化程度达3.4且完全线型的氯甲基化酚酞聚芳醚酮。 通过反应温度及时间可对树脂氯甲基化程度(χCH2Cl-)实施有效的调控。 CMPEK-C的结构由IR和1H NMR进行了表征,测定了CMPEK-C的Tg与χCH2Cl-之间的依赖关系及CMPEK-C的耐热及溶解性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号