首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104993篇
  免费   7311篇
  国内免费   15981篇
化学   87843篇
晶体学   1336篇
力学   2765篇
综合类   963篇
数学   12909篇
物理学   22469篇
  2024年   190篇
  2023年   916篇
  2022年   2550篇
  2021年   2447篇
  2020年   3090篇
  2019年   2807篇
  2018年   2452篇
  2017年   3409篇
  2016年   3730篇
  2015年   3227篇
  2014年   4242篇
  2013年   8101篇
  2012年   7322篇
  2011年   6068篇
  2010年   5099篇
  2009年   6692篇
  2008年   6888篇
  2007年   7172篇
  2006年   6478篇
  2005年   5576篇
  2004年   5223篇
  2003年   4320篇
  2002年   5391篇
  2001年   3242篇
  2000年   2976篇
  1999年   2757篇
  1998年   2410篇
  1997年   1894篇
  1996年   1611篇
  1995年   1540篇
  1994年   1354篇
  1993年   1129篇
  1992年   1017篇
  1991年   694篇
  1990年   585篇
  1989年   544篇
  1988年   408篇
  1987年   323篇
  1986年   293篇
  1985年   257篇
  1984年   254篇
  1983年   152篇
  1982年   225篇
  1981年   186篇
  1980年   204篇
  1979年   192篇
  1978年   172篇
  1977年   122篇
  1976年   110篇
  1973年   67篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this study, the transverse relaxation time (T2) of activated carbon (AC) in different relative environment humidity was detected firstly by low-field nuclear magnetic resonance (LFNMR). The pore size (diameter) of AC distributions was calculated by the relationship between T2 and surface relaxation rate (ρ), where ρ was obtained by the detection of nine porous materials with known pore size. The results showed that the pore size distributions of AC calculated by ρ < 0.19 nm/ms were in good agreement with that obtained by nitrogen adsorption method and proved that LFNMR as a new detection method was feasible for characterizing AC pore size distribution.  相似文献   
2.
《Mendeleev Communications》2022,32(6):777-779
The reactions of aryllithium reagents o-LiC6H4CH2NR2 with (MeO)2CO afford two new tris(aryl)carbinols bearing pendant-NR2 donor groups in the side chain [o-R NCH C H ] COH [R = Me, R + R = (CH) ]. These alcohols feature helical chirality due to differently inclined aromatic fragments and are presented in a crystalline cell as two M and P enantiomers. Carbinol (R = Me) readily reacts with (Me3SiCH2)3Sc(THF)2 to give a scandium bis(alkyl) complex [(o-C6H4CH2NMe2)3CO]Sc(CH2SiMe3)2 featuring rigid binding of the alkoxy anion through a κ1-O, κ2-N chelating coordination mode  相似文献   
3.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
4.
A single bubble absorption column was used to examine the effect of hydrodynamic on carbon dioxide (CO2) and hydrogen sulfide (H2S) absorption in pure water and water-based nanofluids dispersed with neat, and OH and NH2 functionalized multiwall carbon nanotubes (MWCNTs). Sodium dodecyl sulfate (SDS) was used as a surfactant and stabilizer. The maximum absorption of CO2 and H2S were found to be 0.0038 mmol/m2·s and 0.056 mmol/m2·s using NH2-MWCNTs /nanofluid with 0.5 wt% content, respectively. The diffusion coefficients of gases into the nanofluids were computed by using an equation attained based on Dankwert’s theory. A last, an empirical correlation was proposed to determine the Sherwood number for the absorption of the aforementioned gases into the nanofluids.  相似文献   
5.
In this study, we investigated an alternative method for the chemical CO2 reduction reaction in which power ultrasound (488 kHz ultrasonic plate transducer) was applied to CO2-saturated (up to 3%) pure water, NaCl and synthetic seawater solutions. Under ultrasonic conditions, the converted CO2 products were found to be mainly CH4, C2H4 and C2H6 including large amount of CO which was subsequently converted into CH4. We have found that introducing molecular H2 plays a crucial role in the CO2 conversion process and that increasing hydrogen concentration increased the yields of hydrocarbons. However, it was observed that at higher hydrogen concentrations, the overall conversion decreased since hydrogen, a diatomic gas, is known to decrease cavitational activity in liquids. It was also found that 1.0 M NaCl solutions saturated with 2% CO2 + 98% H2 led to maximum hydrocarbon yields (close to 5%) and increasing the salt concentrations further decreased the yield of hydrocarbons due to the combined physical and chemical effects of ultrasound. It was shown that CO2 present in a synthetic industrial flue gas (86.74% N2, 13% CO2, 0.2% O2 and 600 ppm of CO) could be converted into hydrocarbons through this method by diluting the flue gas with hydrogen. Moreover, it was observed that in addition to pure water, synthetic seawater can also be used as an ultrasonicating media for the sonochemical process where the presence of NaCl improves the yields of hydrocarbons by ca. 40%. We have also shown that by using low frequency high-power ultrasound in the absence of catalysts, it is possible to carry out the conversion process at ambient conditions i.e., at room temperature and pressure. We are postulating that each cavitation bubble formed during ultrasonication act as a “micro-reactor” where the so-called Sabatier reaction -CO2+4H2UltrasonicationCH4+2H2O - takes place upon collapse of the bubble. We are naming this novel approach as the “Islam-Pollet-Hihn process”.  相似文献   
6.
Facile construction of sulfur-rich polymers using readily available raw chemicals is an area aggressively pursued but challenging. Herein we use common feedstocks of ethylene oxide (EO), propylene oxide (PO), and carbonyl sulfide (COS) to synthesize copoly(thioether)s which are traditionally produced from unpleasant and difficult to store episulfides. In this protocol, the EO/COS coupling selectively generates a pure poly(ethylene sulfide) (PES) with melting temperature (Tm) values up to 172°C and high yields up to 98%. The EO/PO/COS terpolymerization leads to the incorporation of soft poly(propylene sulfide) (PPS) and hard PES segments together, affording a random PES-co-PPS copoly(thioether) with the complete consumption of EO and PO. Additionally, by simply varying the EO/PO feeding ratio, the obtained copoly(thioether)s possess tunable thermal properties, Tm values in the range of 76–144°C, and excellent solubility. These copolymerizations are conducted in one-pot/one-step at industrially favored reaction temperatures of 100–120°C using catalysts of common organic bases, suggesting a facile and practical manner. Especially, the copoly(thioether) exhibits high refractive indices up to 1.68 owing to its high sulfur content, suggesting a broad application prospect in optical materials.  相似文献   
7.
BPh3 catalyzes the N-methylation of secondary amines and the C-methylenation (methylene-bridge formation between aromatic rings) of N,N-dimethylanilines or 1-methylindoles in the presence of CO2 and PhSiH3; these reactions proceed at 30–40 °C under solvent-free conditions. In contrast, B(C6F5)3 shows little or no activity. 11B NMR spectra suggested the generation of [HBPh3]. The detailed mechanism of the BPh3-catalyzed N-methylation of N-methylaniline ( 1 ) with CO2 and PhSiH3 was studied by using DFT calculations. BPh3 promotes the conversion of two substrates (N-methylaniline and CO2) into a zwitterionic carbamate to give three-component species [Ph(Me)(H)N+CO2⋅⋅⋅BPh3]. The carbamate and BPh3 act as the nucleophile and Lewis acid, respectively, for the activation of PhSiH3 to generate [HBPh3], which is used to produce key CO2-derived species, such as silyl formate and bis(silyl)acetal, essential for the N-methylation of 1 . DFT calculations also suggested other mechanisms involving water for the generation of [HBPh3] species.  相似文献   
8.
Ioan Baldea 《中国物理 B》2022,31(12):123101-123101
Most existing studies assign a polyynic and cumulenic character of chemical bonding in carbon-based chains relying on values of the bond lengths. Building on our recent work, in this paper we add further evidence on the limitations of such an analysis and demonstrate the significant insight gained via natural bond analysis. Presently reported results include atomic charges, natural bond order and valence indices obtained from ab initio computations for representative members of the astrophysically relevant neutral and charged HC2k/2k+1H chain family. They unravel a series of counter-intuitive aspects and/or help naive intuition in properly understanding microscopic processes, e.g., electron removal from or electron attachment to a neutral chain. Demonstrating that the Wiberg indices adequately quantify the chemical bonding structure of the HC2k/2k+1H chains—while the often heavily advertised Mayer indices do not—represents an important message conveyed by the present study.  相似文献   
9.
In this work, a vanillin complex is immobilized onto MCM-41 and characterized by FT-IR, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and BET techniques. This supported Schiff base complex was found to be an efficient and recoverable catalyst for the chemoselective oxidation of sulfides into sulfoxides and thiols into their corresponding disulfides (using hydrogen peroxide as a green oxidant) and also a suitable catalyst for the preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in water at 90°C. Using this protocol, we show that a variety of disulfides, sulfoxides, and 2,3-dihydroquinazolin-4(1H)-one derivatives can be synthesized in green conditions. The catalyst can be recovered and recycled for further reactions without appreciable loss of catalytic performance.  相似文献   
10.
研究桉树控制授粉后目标性状的基因作用方式是探索其基因重组规律的重要内容。常规的数量统计分析精度往往不高,而DNA分析的专业要求高,且费时费力。该研究利用近红外光谱(NIRs)研究不同基因型桉树杂交种、亲本及杂交种与亲本间近红外光谱信息的关系,探索NIRs用于桉树杂交种与其亲本判别的可行性和准确性。以控制授粉的桉树亲本及其杂交F1代材料为对象,每种基因型从各自田间试验分别选取10个单株,采集树冠中上部新鲜健康叶片。用手持式近红外仪Phazir Rx(1624)采集桉树杂交种与其亲本叶片的NIRs信息。每单株选10片完全生理成熟的健康叶片,避开叶脉扫描其正面光谱5次,以50条NIRs信息的均值代表单个叶片的NIRs信息,最终每个基因型获得10条NIRs信息。对原始NIRs采用二阶多项式S.G一阶导数预处理。预处理后的NIRs用于多元统计分析,首先对桉树杂交亲本和子代样本进行主成分分析(PCA),直观展示不同基因型的分类情况。然后运用簇类独立软模式(SIMCA)和偏最小二乘判别分析(PLS-DA)两种有监督的判别模式验证NIRs用于桉树杂交种与其亲本树种的分类判别效果。PCA结果显示,不同的亲本间、杂交种间及杂交种与亲本间样本的主因子得分可以清晰地将各基因型分开。SIMCA模式判别分析中,桉树杂交种样本到亲本PCA模型的样本距离显示,待判别样本能够形成单独的聚类,且能直观反映两者的遗传相似。PLS-DA判别结果显示,桉树杂交亲本的PLS模型能通过预测其杂交子代的响应变量将其与亲本准确分开。结果表明,桉树叶片的NIRs信息可以准确地反映桉树杂交子代遗传信息的传递规律,NIRs判别模型可以准确地将各种基因型予以区分。因此,NIRs信息不仅可用于桉树杂交种和纯种的定性判别,还可以分析桉树基因重组过程中加性遗传效应的大小,从而为桉树遗传基础分析及其育种改良研究提供理论支撑。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号