首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2323篇
  免费   838篇
  国内免费   766篇
化学   2401篇
晶体学   225篇
力学   6篇
综合类   15篇
数学   2篇
物理学   1278篇
  2024年   29篇
  2023年   57篇
  2022年   148篇
  2021年   169篇
  2020年   190篇
  2019年   149篇
  2018年   121篇
  2017年   134篇
  2016年   200篇
  2015年   160篇
  2014年   224篇
  2013年   328篇
  2012年   235篇
  2011年   215篇
  2010年   175篇
  2009年   173篇
  2008年   168篇
  2007年   150篇
  2006年   134篇
  2005年   109篇
  2004年   108篇
  2003年   99篇
  2002年   73篇
  2001年   72篇
  2000年   55篇
  1999年   34篇
  1998年   36篇
  1997年   34篇
  1996年   31篇
  1995年   17篇
  1994年   30篇
  1993年   20篇
  1992年   13篇
  1991年   9篇
  1990年   9篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   4篇
  1973年   1篇
  1959年   1篇
排序方式: 共有3927条查询结果,搜索用时 15 毫秒
1.
The not-sufficient-enough conductance of semioxidized protonated polyaniline (PANI) is usually attributed to the presence of ordered quasi-metallic domains surrounded by a poorly conducting amorphous phase. The paper presents experimental results testifying to the existence, in semioxidized PANI, of multilevel redox heterogeneity that crucially effects the conductance magnitude in view of specific topology at which higher-oxidized (conducting) domains are surrounded by less oxidized (poorly conducting) domains and because the PANI conduction is extremely sensitive to the oxidation degree. It is shown experimentally that the interphase doping with metals and degenerate semiconductors of a semioxidized salt of PANI and poly(2-acrylamide-2-methyl-1-propanesulfonic acid) (PAMPSA) with a 1: 2 ratio between PANI and PAMPSA raises the PANI-PAMPSA conductivity by 3–8 orders of magnitude due to the formation near the interface of thin layers whose conductance depends on the work function of the material in contact with PANI-PAMPSA and in extreme cases substantially exceeds the conductance of gold and copper at room temperature.  相似文献   
2.
The properties of pulsed laser vapor doping on p-Si(1 0 0) with a KrF (248 nm) excimer pulsed laser (248 nm) and BCl3 gas are reported in this paper. The doped samples are characterized by the resistance measured using a four-probe method, since the sheet resistance changes with the carrier concentration of the sample. The doping effects with the variation of laser energy density, pulse number, and the pressure of BCl3 were investigated in terms of the sheet resistance. In this way, the optimized parameters were obtained and used for the positive heavy doping on p-Si(1 0 0) and p-Si(1 1 1). Then, using a square mesh under the above conditions, an image doping was completed. Finally, the metal–semiconductor Ohmic contacts were realized by plating Ag and Cu films on the doped surface.  相似文献   
3.
Quantitative analysis of metal cation doping by solid oxide electrochemical doping (SOED) has been performed under galvanostatic doping conditions. A M–β″-Al2O3 (M=Ag, Na) microelectrode (contact radius: about 10 μm) was used as cation source to attain a homogeneous solid–solid contact between the β″-Al2O3 and doping target. In Ag doping into alkali borate glass, the measured dopant amount closely matched the theoretical value. High Faraday efficiencies of above 90% were obtained. This suggests that the dopant amount can be precisely controlled on a micromole scale by the electric charge during electrolysis. On the other hand, current efficiencies of Na doping into Bi2Sr2CaCu2Oy (BSCCO) ceramics depended on the applied constant current. Efficiencies of above 80% were achieved at a constant current of 10 μA (1.6 A cm−2). The relatively low efficiencies were explained by the saturation of BSCCO grain boundaries with Na. By contrast, excess Na was detected on the anodic surface of ceramics at a constant current of 100 μA (16 A cm−2). In the present study, we demonstrate that SOED enables micromole-scale control over dopant amount.  相似文献   
4.
We discuss the nature of the pairing mechanism and the physical properties associated with the normal as well as the superconducting state of cubic perovskites Ba0.6K0.4BiO3using the strong coupling theory. An interaction potential which includes the Coulomb, electron–optical phonon and electron–plasmon interactions is developed to elucidate the superconducting state. A model dielectric function is constructed with these interactions fulfilling thef-sum rule. The screening parameter (μ* = 0.26) infers the poor screening of charge carriers. The electron–optical phonon strength (λ) estimated as 0.98 is consistent with an attractive electron–electron interaction and supports the moderate to strong coupling theory. The superconducting transition temperature of Ba0.6K0.4BiO3is then estimated as 32 K. Ziman's formula of resistivity is employed to analyse and compare this with the temperature-dependent resistivity of a single crystal. The estimated contribution from the electron–optical phonon together with the residual resistivity clearly infers a difference when a comparison is made with experimental data. The subtracted data infer a quadratic temperature dependence in the temperature domain (30 ≤ T ≤ 200 K). The quadratic temperature dependence of ρ [ = ρexp − (ρ0 + ρe–ph)] is understood in terms of 3D electron–electron inelastic scattering. The presence of these el–el and el–ph interactions allows a coherent interpretation of the physical properties. Analysis reveals that a moderate to strong coupling exists in the Ba0.6K0.4BiO3system and the coupling of electrons with the high-energy optical phonons of the oxygen breathing mode will be a reason for superconductivity. The implications of the above analysis are discussed.  相似文献   
5.
6.
Nitrogen-doped TiO2 powders were successfully prepared by a wet method, i.e., a micro-emulsion-hydrothermal method, in different acid environments. Several characterization techniques, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra, were combined to determine the crystal phase, concentration and chemical states of the nitrogen doped in TiO2. The high photocatalytic activity of the nitrogen-doped TiO2 was evaluated through the decomposition of rhodanmine B under visible light irradiation. It was suggested that the doped nitrogen formed oxynitride (NO) and produced impurity states at higher above the valence band of TiO2. Therefore, the nitrogen doping could enhance the response of photocatalyst to the visible light and improve the photocatalytic activity because of the narrowing of band gap of TiO2.  相似文献   
7.
New solid complex of nitrilotriacetic acid and bismuth trichloride was synthesized by a solid phase reaction of nitrilotriacetic acid and bismuth trichloride at room temperature. The composition of the sample is BiCl3[N(CH2COOH)3]2.5. The crystal structure of the complex belongs to triclinic system with the lattice parameters: α=0.7849 nm, β=0.9821 nm, χ=2.0021 nm, α=96.50°, β=98.76° and γ=90.49°. The far-infrared spectra show the bonding between the Bi ion and N atom of nitrilotriacetic acid. The thermal analysis also demonstrates the complex formation between the bismuth ion and nitrilotriacetic acid. The gaseous pyrolysis product and the final residue in the thermal decomposition process are determined to check the thermal decomposition reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
8.
池利生  苏锵 《应用化学》1993,10(6):27-30
本文报道了不同组成的YPxV1-xO4(0≤x≤1):Dy^3+的合成和结构。YPxV1-xO4(0≤x≤1)为四方晶系,晶胞参数随x的增大呈线性减小。基质的Stokes位移随x的增大逐渐变大,而激发光谱峰值则向短波方向移动。在YPxV1-xO4:0.006Dy^3+体系中,x>0.4时出现的基质发射是由PO^3-4引起的。基质及Dy^3+的发光效率和Dy^3+的发光强度的黄蓝比均与x有关。同时探  相似文献   
9.
The structure and anodic performance of boron-doped and undoped mesocarbon microbeads (MCMBs) have been comparatively studied and the results obtained by XPS, XRD, SEM, Raman spectroscopy and electrochemical measurements are discussed. It is found that boron doping introduces a depressed d 002 spacing and the larger amount of "unorganized carbon", which induces vacancy formation in the graphite planes and leads to a quite different morphology from that of the undoped material. Electrochemical charge/discharge cycle tests indicated that after boron doping the lithium intercalation was carried through at a somewhat higher potential, being attended by greater irreversible capacity loss. Electronic Publication  相似文献   
10.
The influence of the acid catalyst concentration on the structural evolution of a sol-gel system was studied by doping TEOS based starting solutions with two fluorescent probes: a polystyrene chain (M n =1700) and a much shorter alkane chain (M=172), both of them labeled at both ends with 1-pyrenyl. For this purpose, each probe was incorporated in two TEOS∶H2O∶C2H5OH mixtures (molar ratios 1∶4∶1), one at pH 1.2 and the other at pH 2.5 (respectively below and above the isoelectric point of silica). Very low concentrations of the probes were used (≤10−6 M), so the pyrene dimmers and excimers were formed only intramolecularly. The ratios of excimer to monomer fluorescence intensities at excitation wavelength of 360 nm (where mainly the ground state pyrene dimmers are excited) were studied as a function of time. Different evolutions of these ratios were observed, which allowed us to predict that the silica structure developsvia the formation of primary particles, even at pH values below the isoelectric point of silica, where it is not possible to directly detect their formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号