首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   6篇
  国内免费   1篇
化学   25篇
  2022年   1篇
  2021年   3篇
  2020年   7篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
The synthesis and evaluation of structural analogues and isosteres are of central importance in medicinal and agricultural chemistry. The sulfonamide functional group represents one of the most important amide isosteres in contemporary drug design, and about 500 such compounds have overcome both the pharmacological and regulatory hurdles that precede studies in humans. The mono aza analogues of sulfonamides, that is, sulfonimidamides, are rapidly gaining popularity as a novel functional group among synthetic chemists involved in the design of biologically active compounds for both pharmaceutical and agrochemical applications. Herein, we review these recent developments to showcase the promise of this functional group.  相似文献   
2.
Two novel solid reagents—1-sulfonimidoyl- and 1-sulfamimidoyl-3-methylimidazolium derivatives—for the synthesis of sulfonimidamides and imidosulfuric diamides, respectively, were developed. It is shown that these reagents are very effective in substitution reactions with various N- and O-nucleophiles; therefore, they significantly extend the accessibility to the chemical space covered by organosulfur(VI) compounds with S=N bonds. In addition, previously unknown imidosulfuric diamides with free imino nitrogen groups were prepared, and their physical and chemical properties were characterized (including molecular geometry, pKa, Log P, microsomal stability, and reactivity towards typical electrophiles). Similar to other organosulfur(VI) derivatives with S=N bonds, these compounds can be considered as promising bioisosteres of amides, ureas, or sulfonamides.  相似文献   
3.
The syntheses of three bis(benzo[b]thiophen‐2‐yl)methane derivatives, namely bis(benzo[b]thiophen‐2‐yl)methanone, C17H10OS2, (I), 1,1‐bis(benzo[b]thiophen‐2‐yl)‐3‐(trimethylsilyl)prop‐2‐yn‐1‐ol, C22H20OS2Si, (II), and 1,1‐bis(benzo[b]thiophen‐2‐yl)prop‐2‐yn‐1‐ol, C19H12OS2, (III), are described and their crystal structures discussed comparatively. The conformation of ketone (I) and the respective analogues are rather similar for most of the compounds compared. This is true for the interplanar angles, the Caryl—Cbridge—Caryl angles and the dihedral angles. The best resemblance is found for a bioisotere of (I), viz. 2,2′‐dinaphthyl ketone, (VII). By way of interest, the crystal packings also reveal similarities between (I) and (VII). In (I), the edge‐to‐face interactions seen between two napthyl residues in (VII) are substituted by S…π contacts between the benzo[b]thiophen‐2‐yl units in (I). In the structures of the bis(benzo[b]thiophen‐2‐yl)methanols, i.e. (II) and (III), the interplanar angles are also quite similar compared with analogues and related active pharmaceutical ingredients (APIs) containing the dithiophen‐2‐ylmethane scaffold, though the dihedral angles show a larger variability and produce unsymmetrical molecules.  相似文献   
4.
Herein we report the development of a photocatalytic strategy for the divergent preparation of functionalized bicyclo[1.1.1]pentylamines. This approach exploits, for the first time, the ability of nitrogen‐radicals to undergo strain‐release reaction with [1.1.1]propellane. This reactivity is facilitated by the electrophilic nature of these open‐shell intermediates and the presence of strong polar effects in the transition‐state for C?N bond formation/ring‐opening. With the aid of a simple reductive quenching photoredox cycle, we have successfully harnessed this novel radical strain‐release amination as part of a multicomponent cascade compatible with several external trapping agents. Overall, this radical strategy enables the rapid construction of novel amino‐functionalized building blocks with potential application in medicinal chemistry programs as p‐substituted aniline bioisosteres.  相似文献   
5.
6.
Herein, we present the synthesis of the bench-stable sodium bicyclo[1.1.1]pentanesulfinate (BCP-SO2Na) and its application in the synthesis of bicyclo[1.1.1]pentyl (BCP) sulfones and sulfonamides. The salt can be obtained in a four-step procedure from commercially available precursors in multigram scale without the need for column chromatography or crystallization. Sulfinates are known to be useful precursors in radical and nucleophilic reactions and are widely used in medicinal chemistry. This building block enables access to BCP sulfones and sulfonamides avoiding the volatile [1.1.1]propellane which is favorable for the extension of SAR studies. Further, BCP-SO2Na enables the synthesis of products that were not available with previous methods. A chlorination of BCP-SO2Na and subsequent reaction with a Grignard reagent provides a new route to BCP sulfoxides. Several products were analyzed by single-crystal X-ray diffraction.  相似文献   
7.
The bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles are well-known pharmacophores for many medicinally important drugs. Throughout the past 10 years, 1,3,4-oxa-/thiadiazole nuclei have been very attractive to researchers for drug design, synthesis, and the study of their potential activity towards a variety of diseases, including microbial and viral infections, cancer, diabetes, pain, and inflammation. This work is an up-to-date comparative study that identifies the differences between 1,3,4-thiadiazoles and 1,3,4-oxadiazoles concerning their methods of synthesis from different classes of starting compounds under various reaction conditions, as well as their biological activities and structure–activity relationship.  相似文献   
8.
A simple method to convert readily available carboxylic acids into sulfinate salts by employing an interrupted Barton decarboxylation reaction is reported. A medicinally oriented panel of ten new sulfinate reagents was created using this method, including a key trifluoromethylcyclopropanation reagent, TFCS‐Na. The reactivity of six of these salts towards C? H functionalization was field‐tested using several different classes of heterocycles.  相似文献   
9.
1,2,3-Triazoles are well-established bioisosteres for amides, often installed as a result of structure−activity-relationship (SAR) exploration. A straightforward approach to assess the effect of the replacement of an amide by a triazole would start from the carboxylic acid and the amine used for the formation of a given amide and convert them into the corresponding alkyne and azide for cyclization by copper-catalyzed alkyne−azide cycloaddition (CuAAC). Herein, we report a functional-group-tolerant and operationally simple decarbonylative alkynylation that allows the conversion of complex (hetero)aryl carboxylic acids into alkynes. Furthermore, the utility of this method was demonstrated in the preparation of a triazolo analog of the commercial drug moclobemide. Lastly, mechanistic investigations using labeled carboxylic acid derivatives clearly show the decarbonylative nature of this transformation.  相似文献   
10.
Pharmaceutical and agrochemical discovery programs are under considerable pressure to meet increasing global demand and thus require constant innovation. Classical hydrocarbon scaffolds have long assisted in bringing new molecules to the market place, but an obvious omission is that of the Platonic solid cubane. Eaton, however, suggested that this molecule has the potential to act as a benzene bioisostere. Herein, we report the validation of Eaton's hypothesis with cubane derivatives of five molecules that are used clinically or as agrochemicals. Two cubane analogues showed increased bioactivity compared to their benzene counterparts whereas two further analogues displayed equal bioactivity, and the fifth one demonstrated only partial efficacy. Ramifications from this study are best realized by reflecting on the number of bioactive molecules that contain a benzene ring. Substitution with the cubane scaffold where possible could revitalize these systems, and thus expedite much needed lead candidate identification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号