首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2767篇
  免费   250篇
  国内免费   324篇
化学   2695篇
晶体学   14篇
力学   13篇
综合类   19篇
数学   28篇
物理学   572篇
  2024年   7篇
  2023年   32篇
  2022年   111篇
  2021年   106篇
  2020年   143篇
  2019年   103篇
  2018年   96篇
  2017年   105篇
  2016年   106篇
  2015年   104篇
  2014年   115篇
  2013年   213篇
  2012年   210篇
  2011年   167篇
  2010年   115篇
  2009年   172篇
  2008年   145篇
  2007年   157篇
  2006年   151篇
  2005年   137篇
  2004年   121篇
  2003年   124篇
  2002年   98篇
  2001年   89篇
  2000年   53篇
  1999年   52篇
  1998年   44篇
  1997年   36篇
  1996年   27篇
  1995年   20篇
  1994年   36篇
  1993年   23篇
  1992年   15篇
  1991年   9篇
  1990年   20篇
  1989年   14篇
  1988年   15篇
  1987年   9篇
  1986年   11篇
  1985年   8篇
  1984年   7篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
排序方式: 共有3341条查询结果,搜索用时 15 毫秒
1.
Reduction of tetranuclear heterometallic complex Mo2Mg2 was simulated using the B3LYP and PBE density functional methods. The results of geometry calculations of the initial complex [MoVIO2Mg(MeOH)2(OMe)4]2 and a partially reduced MoV complex are in good agreement with experimental data. The reduced MoIII complex is characterized by a decrease in the binding energy of aqua ligands. Structural rearrangement of the complex with release of a coordination position at the Mo atoms requires small energy expenditure. One can assume that the reduction of the polynuclear complex causes overcrowding of its coordination sphere, which favors formation of dinitrogen complexes. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 441–457, March, 2008.  相似文献   
2.
‘Head-to-head’ oligo-N-methylpyrrole peptide dimers linked by a methano[1,5]diazocin scaffold are presented in racemic as well as chiral fashion. Their DNA binding activities were assayed on calf thymus DNA, poly(dA-dT)2, and poly(dC-dG)2 by NMR and ECD spectroscopies, and fluorescence probe displacement assay. The presented dimers prefer AT sequences, but show higher affinity to poly(dC-dG)2 than distamycin A. The (4R,9R) configuration of methanodiazocin bridge was found to be better suited for interaction with ct-DNA and poly(dA-dT)2 than (4S,9S) configuration.  相似文献   
3.
G-quadruplexes (G4) are now extensively recognised as a peculiar non-canonical DNA geometry that plays a prime importance role in processes of biological relevance whose number is increasing continuously. The same is true for the less-studied RNA G4 counterpart. G4s are stable structures; however, their geometrical parameters may be finely tuned not only by the presence of particular sequences of nucleotides but also by the salt content of the medium or by a small molecule that may act as a peculiar topology inducer. As far as the interest in G4s increases and our knowledge of these species deepens, researchers do not only verify the G4s binding by small molecules and the subsequent G4 stabilisation. The most innovative studies now aim to elucidate the mechanistic details of the interaction and the ability of a target species (drug) to bind only to a peculiar G4 geometry. In this focused review, we survey the advances in the studies of the binding of small molecules of medical interest to G4s, with particular attention to the ability of these species to bind differently (intercalation, lateral binding or sitting atop) to different G4 topologies (parallel, anti-parallel or hybrid structures). Some species, given the very high affinity with some peculiar G4 topology, can first bind to a less favourable geometry and then induce its conversion. This aspect is also considered.  相似文献   
4.
Within this research, the CrdA protein from Helicobacter pylori (HpCrdA), a putative copper-binding protein important for the survival of bacterium, was biophysically characterized in a solution, and its binding affinity toward copper was experimentally determined. Incubation of HpCrdA with Cu(II) ions favors the formation of the monomeric species in the solution. The modeled HpCrdA structure shows a conserved methionine-rich region, a potential binding site for Cu(I), as in the structures of similar copper-binding proteins, CopC and PcoC, from Pseudomonas syringae and from Escherichia coli, respectively. Within the conserved amino acid motif, HpCrdA contains two additional methionines and two glutamic acid residues (MMXEMPGMXXMXEM) in comparison to CopC and PcoC but lacks the canonical Cu(II) binding site (two His) since the sequence has no His residues. The methionine-rich site is in a flexible loop and can adopt different geometries for the two copper oxidation states. It could bind copper in both oxidation states (I and II), but with different binding affinities, micromolar was found for Cu(II), and less than nanomolar is proposed for Cu(I). Considering that CrdA is a periplasmic protein involved in chaperoning copper export and delivery in the H. pylori cell and that the affinity of the interaction corresponds to a middle or strong metal–protein interaction depending on the copper oxidation state, we conclude that the interaction also occurs in vivo and is physiologically relevant for H. pylori.  相似文献   
5.
In this study, we investigated how the presence of multiple intermolecular interaction sites influences the heteromeric supramolecular assembly of N-[(3-pyridinylamino) thioxomethyl] carbamates with fluoroiodobenzenes. Three targets—R-N-[(3-pyridinylamino) thioxomethyl] carbamate (R = methyl, ethyl, and isobutyl)—were selected and crystallized, resulting in three parent structures, five co-crystals, and one co-crystal solvate. Three hydrogen-bonded parent crystal structures were stabilized by N-H···N hydrogen bonding and assembled into layers that stacked on top of one another. Molecular electrostatic potential surfaces were employed to rank binding sites (Npyr > C=S > C=O) in order to predict the dominant interactions. The N-H⋯H hydrogen bond was replaced by I⋯Npyr in 3/6 cases, I⋯C=S in 4/6 cases, and I⋯O=C in 1 case. Interestingly, the I⋯C=S halogen bond coexisted twice with I⋯Npyr and I⋯O=C. Overall, the MEPs were fairly reliable for predicting co-crystallization outcomes; however, it is crucial to also consider factors such as molecular flexibility. Finally, halogen-bond donors are capable of competing for acceptor sites, even in the presence of strong hydrogen-bond donors.  相似文献   
6.
The adenosine A2A receptor (A2AAR) is a class A G-protein-coupled receptor (GPCR). It is an immune checkpoint in the tumor micro-environment and has become an emerging target for cancer treatment. In this study, we aimed to explore the effects of cancer-patient-derived A2AAR mutations on ligand binding and receptor functions. The wild-type A2AAR and 15 mutants identified by Genomic Data Commons (GDC) in human cancers were expressed in HEK293T cells. Firstly, we found that the binding affinity for agonist NECA was decreased in six mutants but increased for the V275A mutant. Mutations A165V and A265V decreased the binding affinity for antagonist ZM241385. Secondly, we found that the potency of NECA (EC50) in an impedance-based cell-morphology assay was mostly correlated with the binding affinity for the different mutants. Moreover, S132L and H278N were found to shift the A2AAR towards the inactive state. Importantly, we found that ZM241385 could not inhibit the activation of V275A and P285L stimulated by NECA. Taken together, the cancer-associated mutations of A2AAR modulated ligand binding and receptor functions. This study provides fundamental insights into the structure–activity relationship of the A2AAR and provides insights for A2AAR-related personalized treatment in cancer.  相似文献   
7.
We have used fluorescence spectroscopy methods to show that imidacloprid and its structural analogs form complexes with human serum albumin (HSA). The nature of the spectral changes in the ligand×protein systems and the calculated complexation parameters suggest that these low molecular weight compounds mainly bind to a specific section of the protein molecule, near the tryptophan residue in the 214 position of the polypeptide chain. We have found that the association constants are on the order of 104 M−1, and the affinity of the ligands for HSA varies in the series 6-chloronicotinic acid > 6-methoxynicotinic acid = imidacloprid > the keto analog of imidacloprid. The major contribution to the complexation energy probably comes from hydrophobic interaction forces with participation of the aromatic pyridine ring of the ligands, while additional enhancement of ligand-protein affinity can be provided by the nitroimine group of imidacloprid. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 6, pp. 859–866, November–December, 2008.  相似文献   
8.
9.
Serum proteins represent an important class of drug and imaging agent delivery vectors. In this minireview, key advantages of using serum proteins are discussed, followed by the particular advantages and challenges associated with employing soluble folate binding protein. In particular, approaches employing drugs that target folate metabolism are reviewed. Additionally, the slow-onset, tightbinding interaction of folate with folate binding protein and the relationship to a natural oligomerization mechanism is discussed. These unique aspects of folate binding protein suggest interesting applications for the protein as a vector for further drug and imaging agent development.  相似文献   
10.
Direct detection of 13C nucleus can be used as a valuable alternative where 1H detection poses a challenge due to relaxation effects, chemical exchange and poor chemical shift dispersion. In this context, we have designed a suite of 2D 13Cα‐detected hNCA experiments that provide sequential correlations of 13Cα with 15N on one hand and efficient spectroscopic labeling of certain groups of residues, namely, Gly, Ala, Ser and Thr, on the other. These residues act as checkpoints in the sequential walk, which in turn offer new possibilities of backbone assignment of small proteins from a set of 2D experiments, thereby providing great economy in terms of spectrometer time. The direct identification of peptide segments around Gly, Ala, Ser and Thr residues along a protein chain will be highly valuable for deriving important information on sites of ligand binding, phosphorylation, inhibitor/substrate binding, understanding protein folding pathways, comprehending local conformational dynamics etc. without having to obtain complete sequence‐specific assignments, which can be time consuming and at times formidable, especially in large proteins. We have illustratively demonstrated the multifaceted applications of these variants of 2D experiments on ubiquitin and M‐crystallin. We foresee that these 2D hNCA experiments will provide economic and efficient strategies for studying the structure and function of proteins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号