首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   90篇
  国内免费   72篇
化学   529篇
力学   1篇
综合类   2篇
数学   2篇
物理学   23篇
  2024年   2篇
  2023年   14篇
  2022年   32篇
  2021年   39篇
  2020年   80篇
  2019年   34篇
  2018年   37篇
  2017年   19篇
  2016年   38篇
  2015年   21篇
  2014年   31篇
  2013年   26篇
  2012年   21篇
  2011年   15篇
  2010年   16篇
  2009年   20篇
  2008年   20篇
  2007年   11篇
  2006年   9篇
  2005年   10篇
  2004年   11篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1987年   2篇
  1979年   1篇
  1976年   1篇
  1959年   1篇
排序方式: 共有557条查询结果,搜索用时 15 毫秒
1.
Recently the hydrogen-bond activated reactions have attracted much attention.1 Takemoto2 reported a highly enantioselective Michael addition of manolate to nitroolefins catalyzed by a bifunctional organocatalyst with tertiary amine and thiourea moiety. As we known,stereoselective conjugate additions of thiols are interesting due to the standpoint of biological and synthetic importance, however, only very limited good results have been obtained except for the works of Shibasaki3, Kanemasa4 and Deng5 et al.In this letter, we report an efficient catalytic asymmetric Michael reactions of thiols to a,a-unsaturated carbonyl compounds promoted by bifunctional organocatalysts. A series of organocatalysts with chiral amine and thiourea structures were designed and synthesized and have been successfully applied in the conjugated additions of thiols to a,a-unsaturated imides and enones.The reactions got quantitative yields and the ee values were up to 84%. It is noteworthy that the a-asymmetric protonation (up to 43% ee) also could be achieved.The Michael addition between aromatic thiols and a,a-unsaturated carbonyl compounds isdescribed as follows:Works to further increase the enantioselectivity is under investigation in our laboratory.  相似文献   
2.
The experimental values of the gas-phase proton affinities for a variety of 4-substituted benzonitriles, 4-substitutedN, N-dimethylanilines, and 4-substituted benzaldehydes have been examined by means of correlation analysis techniques and by ab initio quantum mechanical methods (MP2/ 6-31G(d) level). From this study it is concluded that in the gas phase, 4-(dimethylamino)-benzonitrile essentially protonates on the dimethylamino group, while protonated 4-cyanobenzaldehyde is very nearly a 21 mixture of the carbonyl- and cyano-protonated forms.This work is dedicatedin memoriam to Professor Robert W. Taft.  相似文献   
3.
《Mendeleev Communications》2020,30(1):119-120
  1. Download : Download high-res image (71KB)
  2. Download : Download full-size image
  相似文献   
4.
金属/氮/碳催化剂(M/N/C,M=Fe、Co等)是最有发展前景的非贵金属电催化剂之一,其性能依赖于催化剂表面的活性物种密度.通过常规的热解含氮前驱物与金属盐的方法制得的催化剂往往存在金属活性物种被包埋而不能有效利用的缺点.考虑到石墨相氮化碳(g-C3N4)富含类吡啶氮和亚纳米孔腔结构,将g-C3N4包覆在高导电性碳纳米笼(hCNC)表面,进而利用表层g-C3N4的配位和限域作用锚定大量Co2+离子,获得的Co/g-C3N4/hCNC复合物经热解后形成了活性位高度暴露、导电性好、孔结构丰富的Co/N/C催化剂.800℃热解得到的最优化催化剂在碱性介质中展现出优异氧还原活性,其起始电位(0.97 V)与商业Pt/C催化剂相当,且抗甲醇干扰性能和稳定性优异.此项研究提供了一种构建具有高度暴露活性位的M/N/C催化剂的有效策略.  相似文献   
5.
Bifunctional periodic mesoporous organosilica materials with and without cobalt ion incorporation were synthesized by co-condensation of 1,2-bistrimethoxysilylethane (BTME) with 3-glycidoxypropyltriethoxysilane (GPTS) in the presence of cetyltrimethylammonium bromide. Nitrogen gas adsorption on samples with varying ratios of BTME:GPTS revealed that increasing the amount of GPTS affects pore size, surface area and pore volume as well as shapes of the isotherms and hysteresis loops. The hysteresis loops of the Type IV isotherms obtained for GPTS-modified ethane silica materials (without cobalt ion) change from Type H3 to Type H4 with increasing GPTS content. There is a tendency for pore sizes to change from mesopore to micropore when the amount of GPTS is increased. Isotherms of cobalt ion incorporated GPTS-modified ethane silica materials change from Type IV to Type I with increasing GPTS content. The surface area, pore volume and pore diameter decrease with increasing loading of GPTS as well as after cobalt ion incorporation. Thermogravimetric analysis and differential thermal analysis show that the surfactant is removed by solvent extraction. Cobalt ion incorporation is confirmed by powder X-ray diffraction and Raman spectroscopy.  相似文献   
6.
Polyoxometalates (POMs) demonstrate potential for application in the development of integrated smart energy devices based on bifunctional electrochromic (EC) optical modulation and electrochemical energy storage. Herein, a nanocomposite thin film composed of a vanadium-substituted Dawson-type POM, i.e., K7[P2W17VO62]·18H2O, and TiO2 nanowires were constructed via the combination of hydrothermal and layer-by-layer self-assembly methods. Through scanning electron microscopy and energy-dispersive spectroscopy characterisations, it was found that the TiO2 nanowire substrate acts as a skeleton to adsorb POM nanoparticles, thereby avoiding the aggregation or stacking of POM particles. The unique three-dimensional core−shell structures of these nanocomposites with high specific surface areas increases the number of active sites during the reaction process and shortens the ion diffusion pathway, thereby improving the electrochemical activities and electrical conductivities. Compared with pure POM thin films, the composite films showed improved EC properties with a significant optical contrast (38.32% at 580 nm), a short response time (1.65 and 1.64 s for colouring and bleaching, respectively), an excellent colouration efficiency (116.5 cm2 C−1), and satisfactory energy-storage properties (volumetric capacitance = 297.1 F cm−3 at 0.2 mA cm−2). Finally, a solid-state electrochromic energy-storage (EES) device was fabricated using the composite film as the cathode. After charging, the constructed device was able to light up a single light-emitting diode for 20 s. These results highlight the promising features of POM-based EES devices and demonstrate their potential for use in a wide range of applications, such as smart windows, military camouflage, sensors, and intelligent systems.  相似文献   
7.
Carotenoid succinates were synthesized from hydroxy carotenoids and were coupled to a commercially available derivative of melatonin via amide bond for producing more powerful anti-oxidants and yet new hybrid lipophilic bifunctional molecules with additional therapeutic effects. The coupling reactions produced conjugates in acceptable to good yields. Succinylation increased the water solubility of the carotenoids, while the conjugation with melatonin resulted in more lipophilic derivatives. The conjugates showed self-assembly in aqueous medium and yielded relatively stable colloidal solutions in phosphate-buffered saline. Antioxidant behavior was measured with ABTS and the FRAP methods for the carotenoids, the carotenoid succinates, and the conjugates with melatonin. A strong dependence on the quality of the solvent was observed. TEAC values of the new derivatives in phosphate-buffered saline were found to be comparable to or higher than those of parent carotenoids, however, synergism was observed only in FRAP assays.  相似文献   
8.
9.
We describe the discovery of novel low cost bifunctional initiators 2,4,7,9‐tetramethyl‐tricyclo[6.2.0.036]deca‐1(8),2,6‐triene‐4,9‐diol (bBCB‐diOH) and 4,9‐dichloro,2,4,7,9‐tetramethyl‐tricyclo[6.2.0.036]deca‐1(8),2,6‐triene (bBCB‐diCl), for living cationic bidirectional polymerization of olefins, for example, isobutylene. bBCB‐diOH was quantitatively synthesized in one step by UV radiation of commercially available diacetyl durene (DAD) and bBCB‐diCl by hydrochlorination of bBCB‐diOH. These molecules, in conjunction with TiCl4 coinitiator, initiate the living polymerization of isobutylene. Livingness was demonstrated by linear conversion versus molecular weight (MW) plots and narrow MW distributions. Polymerizations are slower than those initiated by the universally used “hindered” bifunctional initiator 5‐tert‐butyl‐1,3‐bis(1‐chloro‐1‐methyl)benzene and are suitable for rate studies. Herein, we report the synthesis, by the use of bBCB‐diCl, of relatively low MW (M n < 3000 g mol?1) allyl‐telechelic polyisobutylene (PIB) used for the synthesis of PIB‐based polyurethanes and that of relatively high MW (M n > 30,000) living PIB telechelics for the synthesis of thermoplastic elastomers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3716–3724  相似文献   
10.
Lithium-sulfur batteries have been considered as potential electrochemical energy-storage devices owing to their satisfactory theoretical energy density. Nonetheless, the inferior conversion efficiency of polysulfides in essence leads to fast capacity decay during the discharge/charge cycle. In this work, it is successfully demonstrated that the conversion efficiency of lithium polysulfides is remarkably enhanced by employing a well-distributed atomic-scale Fe-based catalyst immobilized on nitrogen-doped graphene (Fe@NG) as a coating of separator in lithium-sulfur batteries. The quantitative electrocatalytic efficiency of the conversion of lithium polysulfides is determined through cyclic voltammetry. It is also proven that the Fe-NX configuration with highly catalytic activity is quite beneficial for the conversion of lithium polysulfides. In addition, the adsorption and permeation experiments distinctly indicate that the strong anchoring effect, originated from the charge redistribution of N doping into the graphene matrix, inhibits the movement of lithium polysulfides. Thanks to these advantages, if the as-prepared Fe@NG catalyst is combined with polypropylene and applied as a separator (Fe@NG/PP) in Li-S batteries, a high initial capacity (1616 mA h g−1 at 0.1 C), excellent capacity retention (93 % at 0.2 C, 70 % at 2 C), and superb rate performance (820 mA h g−1 at 2 C) are achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号