首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   10篇
  国内免费   3篇
化学   35篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有35条查询结果,搜索用时 62 毫秒
1.
The effects of vitamin C are determined in the oil-in-water(0/ W) and water-in-oil(W/ 0) microemulsion regions of CTAB/ pentanol/ p-xylene/ H20 system. The addition of Vc joins the O/ W and W/ O areas in the phase diagram and expands the bicontinous region by reducing the lamellar liquid crystal one. The results show that the “ coupling action” of Vc is in fact a structural transition from lamellar crystal to isotropic phase with W/ O, O/ W and bicontinous structure.  相似文献   
2.
3.
This paper presents the synthesis and characterization of d ‐fructose modified poly(ethylene glycol) (Fru‐PEG) and fructose modified poly(ethylene glycol)‐block‐poly(ethyl hexyl glycidyl ether) (Fru‐PEG‐b‐PEHG) that are both prepared by initiation with isopropyliden protected fructose, followed by deprotection of the sugar. The block copolymers are self‐assembled into micelles, and are subsequently characterized by cryo‐TEM and dynamic light scattering. The fluorescent dye Nile red is encapsulated as a model hydrophobic compound and fluorescent marker to perform initial uptake tests with breast cancer cells. The uptake of sugar and nonsugar decorated micelles is compared.  相似文献   
4.
A water-in-oil microemulsion composed of water, AOT and decane with volume fraction φ=0.50 and molar ratio X=40.8 was analysed by DSC. The percolation and the bicontinuous transitions as well as the melting endotherms and the freezing exotherms were measured. The main attention was focussed on the system energy balance. It was found that, by freezing the samples after the occurrence of the percolative transition, the total heat released is significantly less than the heat absorbed in the melting endotherms. A simple geometrical model was used as an analysis tool of the aforementioned energy difference. Since the system studied exhibits a percolative transition of dynamic type, on approaching the percolation threshold temperature (TT p) and a static percolation for TT p, the structural change from the connecting water-droplet-cluster to a connecting water channel was schematised in the model as a change from a sphere-necklace to a water-cylindrical channel of equal volume and equal length. The surface energy associated with the formation of the two different geometrical surfaces was evaluated and the amount of saved energy compared with the experimentally measured one.  相似文献   
5.
The preparation of bicontinuous nanoporous covalent frameworks, which are promising for caging active enzymes, is demonstrated. The frameworks have three‐ dimensionally continuous, hydrophilic pores with widths varying between 5 and 30 nm. Enzymes were infiltrated into the bicontinuous pore by applying a pressured enzyme solution. The new materials and methods allowed the amount of caged proteins to be controlled precisely. The resulting enzyme‐loaded framework films could be recycled many times with nearly no loss of catalytic activity. Entropic trapping of proteins by a bicontinuous pore with the right size distribution is an unprecedented strategy toward facile in vitro utilization of biocatalysts.  相似文献   
6.
Middle-phase microemulsions exhibit the unique properties of an ultra-low interfacial tension and a bicontinuous structure formed from the water and oil components. New developments exploiting these properties are described. In designing such systems, it is important that the spontaneous transition of the oil droplets from Winsor II through Winsor III to the Winsor I state is brought about by diffusion or chemical reaction. The selection of the hydrophobic and lipophilic surfactants is critical when low-energy emulsification systems for highly polar oils are being developed.  相似文献   
7.
Summary: Coexisting bicontinuous morphologies, one ordered and one disordered, are investigated in a macrophase‐separated poly(styrene‐block‐isoprene) diblock copolymer/homopolystyrene (SI/hS) blend. Two‐phase behavior is attributed to the relatively high hS/S mass ratio (0.92). According to its crystallographic signature and channel coordination as discerned from three‐dimensional (3D) images generated by transmission electron microtomography (TEMT), the ordered morphology is classified as gyroid. The 3D local and global topological characteristics of both bicontinuous morphologies as measured directly from TEMT images are reported. The disordered morphology is further compared with molecular‐field simulations to ascertain the spatial distribution of the constituent species within the blend, thereby demonstrating the utility of high‐resolution 3D imaging coupled with molecular‐level simulations.

  相似文献   

8.
We report a new molecular-design principle for creating double-gyroid nanostructured molecular assemblies based on atropisomerization. Ionic amphiphiles containing two imidazolium rings close to each other were designed and synthesized. NMR data revealed that the rotation of the imidazolium rings is restricted, with an activation energy as high as 63 kJ mol−1 in DMSO-d6 solution (DFT prediction for a model compound in the vacuum: 90–100 kJ mol−1). Due to the restricted rotation, the amphiphiles feature “double” atropisomeric axes in their ionic segments and form three stable atropisomers: meso, R, and S. These isomers co-organize into -type bicontinuous cubic liquid-crystalline mesophases through nanosegregation of the ionic and non-ionic parts. Considering the intrinsic characteristic of -type bicontinuous cubic structures that they are composed of intertwined right- and left-handed single gyroids, we propose that the simultaneous presence of both R- and S-atropisomers is an important contributor to the formation of double-gyroid structures.  相似文献   
9.
PbS nanotubes were synthesized by the tiny water channels in bicontinuous microemulsions consisted of p-octyl polyethylene glycol phenylether (OP)/n-amyl alcohol/cyclohexane/water. The possible formation mechanism of PbS nanotubes is also discussed based on their shape evolutions. The results indicate that the formation of PbS nanotubes is probably via the process of the nucleation, growth, assemblage and crystallization.  相似文献   
10.
Two types of polymer–silica nanocomposites have been prepared by undergoing free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) either in the presence of HEMA-functionalized SiO2 nanoparticles (Type 1) or during the simultaneous in situ growing of the silica phase through the acid-catalyzed sol–gel polymerization of tetraethoxysilane (TEOS) (Type 2). Relationships between synthesis conditions, chemical structure, and resulting morphology have been studied. Type 1 systems exhibit a classical particle-matrix morphology, but where particles tend to form aggregates. Type 2 systems possess a finer morphology characterized by a very open mass-fractal silicate structure, which is believed to be bicontinuous with the organic phase at a molecular level. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3172–3187, 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号