首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
化学   46篇
  2013年   1篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   3篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
We calculated the intake of each chemical species of dietary arsenic by typical Japanese, and determined urinary and blood levels of each chemical species of arsenic. The mean total arsenic intake by 35 volunteers was 195±235 (15.8-1039) μg As day?1, composed of 76% trimethylated arsenic (TMA), 17.3% inorganic arsenic (Asi), 5.8% dimethylated arsenic (DMA), and 0.8% monomethylated arsenic (MA): the intake of TMA was the largest of all the measured species. Intake of Asi characteristically and invariably occurred in each meal. Of the intake of Asi, 45-75% was methylated in vivo to form MA and DMA, and excreted in these forms into urine. The mean measured urinary total arsenic level in 56 healthy volunteers was 129±92.0 μg As dm?3, composed of 64.6% TMA, 26.7% DMA, 6.7% Asi and 2.2% MA. The mean blood total arsenic level in the 56 volunteers was 0.73±0.57 μg dl?1, composed of 73% TMA, 14% DMA and 9.6% Asi. The urinary TMA levels proved to be significantly correlated with the whole-blood TMA levels (r = 0.376; P<0.01).  相似文献   
2.
Humans are exposed via air, water and food to a number of different arsenic compounds, the physical, chemical, and toxicological properties of which may vary considerably. In people eating much fish and shellfish the intake of organic arsenic compounds, mainly arsenobetaine, may exceed 1000 μg As per day, while the average daily intake of inorganic arsenic is in the order of 10–20 μg in most countries. Arsenobetaine, and most other arsenic compounds in food of marine origin, e.g. arsenocholine, trimethylarsine oxide and methylarsenic acids, are rapidly excreted in the urine and there seem to be only minor differences in metabolism between animal species. Trivalent inorganic arsenic (AsIII) is the main form of arsenic interacting with tissue constituents, due to its strong affinity for sulfhydryl groups. However, a substantial part of the absorbed AsIII is methylated in the body to less reactive metabolities, methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are rapidly excreted in the urine. All the different steps in the arsenic biotransformation in mammals have not yet been elucidated, but it seems likely that the methylation takes place mainly in the liver by transfer of methyl groups from S-adenosylmethionine to arsenic in its trivalent oxidation state. A substantial part of absorbed arsenate (AsV) is reduced to AsIII before being methylated in the liver. There are marked species differences in the methylation of inorganic arsenic. In most animal species DMA is the main metabolite. Compared with human subjects, very little MMA is produced. The marmoset monkey is the only species which has been shown unable to methylate inorganic arsenic. In contrast to other species, the rat shows a marked binding of DMA to the hemoglobin, which results in a low rate of urinary excretion of arsenic.  相似文献   
3.
Abstract

A photolytic method, which uses UV irradiation (254 nm) and K2S2O8 in alkaline media has been optimized for the speciation of arsenite, arsenate, monomethylarsonic and dimethylarsinic acid, arsenobetaine and arsenocholine. Under these conditions it is possible to obtain not only simple species from arsenobetaine and arsenocholine with good yields, but also to establish the optimum conditions to carry out the process on-line with HG-ICP/OES for the determination of these species.

The products obtained in the photolytic reaction are introduced into the reduction chamber to form arsines. According to the results obtained from the ICP measurements, the recoveries obtained are about 100% and the procedure has a good reproducibility.  相似文献   
4.
The behavior of arsenite, methylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, dimethyl-R-arsine oxides, and trimethyl-R-arsonium compounds (R = carboxymethyl, 2-carboxyethyl, 2-hydroxyethyl) toward sodium borohydride and hot aqueous sodium hydroxide was investigated. The arsines obtained by sodium borohydride reduction of the undigested and digested solutions were collected in a liquid-nitrogen cooled trap, separated with a gas chromatograph, and detected with a mass spectrometer in the selected-ion-monitoring mode. The investigated arsenic compounds were stable in hot 2 mol dm?3 sodium hydroxide except arsenobetaine [trimethyl(carboxymethyl)arsonium zwitterion] that was converted to trimethylarsine oxide, and dimethyl(ribosyl)arsine oxides that were decomposed to dimethylarsinic acid. Hydride generation before and after digestion of extracts from marine organisms allowed inorganic arsenic, methylated arsenic, arsenobetaine, and ribosyl arsenic compounds to be identified and quantified. This method was applied to extracts from shellfish, fish, crustaceans, and seaweeds.  相似文献   
5.
The acute toxicity of methylarsonic acid, CH3AsO(OH)2 (MAA), dimethylarsininc acid, (CH3)2AsO(OH) (DMAA), and trimethylarsine oxide, (CH3)3AsO (TMAO), were examined in mice with oral administration. The LD50 values of MAA, DMAA and TMAO were 1.8, 1.2 and 10.6 g kg?1 respectively. The toxicity of MAA and DMAA was very much lower than that for inorganic arsenic compounds. It was shown that TMAO has a similar acute toxicity to arsenobetaine. On the other hand, when the mice were administered 14.4 g kg?1 of TMAO once only orally, a garlic-like odor (trimethylarsine, (CH3)3As) was definitely detectable in the exhalation of the animals by the human olfactory sense within about a few minutes.  相似文献   
6.
The arsenic species present in samples of the crayfish Procambarus clarkii caught in the area affected by the toxic mine‐tailing spill at Aznalcóllar (Seville, Southern Spain) were analyzed. The total arsenic contents ranged between 1.2 and 8.5 µg g?1 dry mass (DM). With regard to the different species of arsenic, the highest concentrations were for inorganic arsenic (0.34–5.4 µg g?1 DM), whereas arsenobetaine, unlike the situation found in marine fish products, was not the major arsenic species (0.16 ± 0.09 µg g?1 DM). Smaller concentrations were found of arsenosugars 1a (0.18 ± 0.11 µg g?1 DM), 1b (0.077 ± 0.049 µg g?1 DM), 1c (0.080 ± 0.089 µg g?1 DM), and 1d (0.14 ± 0.13 µg g?1 DM). The presence of two unknown arsenic species was revealed (U1: 0.058 ± 0.058 µg g?1 DM; U2: 0.12 ± 0.12 µg g?1 DM). No significant differences were seen with respect to the total arsenic contents between the sexes. However, significant differences in the total arsenic contents were revealed between the area affected by the spill and the area not affected, the contents being greater in the affected area. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
7.
A method for the separation and identification of inorganic and methylated arsenic compounds in marine organisms was constructed by using a hydride generation/cold trap/gas chromatography mass spectrometry (HG/CT/GC MS) measurement system. The chemical form of arsenic compounds in marine organisms was examined by the HG/CT/GC MS system after alkaline digestion. It was observed that trimethylarsenic compounds were distributed mainly in the water-soluble fraction of muscle of carnivorous gastropods, crustaceans and fish. Also, dimethylated arsenic compounds were distributed in the water-soluble fraction of Phaeophyceae. It is thought that most of the trimethylated arsenic is likely to be arsenobetaine since this compound released trimethylarsine by alkaline digestion and subsequent reduction with sodium borohydride. The major arsenic compound isolated from the water-soluble fraction in the muscle and liver of sharks was identified as arsenobetaine from IR, FAB Ms data, NMR spectra and TLC behaviour. The acute toxicity of arsenobetaine was studied in male mice. The LD50 value was higher than 10 g kg−1. This compound was found in urine in the non-metabolized form. No particular toxic symptoms were observed following administration. These results suggest that arsenobetaine has low toxicity and is not metabolized in mice. The LD50 values of other minor arsenicals in marine organisms, trimethylarsine oxide, arsenocholine and tetramethylarsonium salt, were also examined in mice.  相似文献   
8.
Two lichens and 12 green plants growing at a former arsenic roasting facility in Austria were analyzed for total arsenic by ICP–MS, and for 12 arsenic compounds (arsenous acid, arsenic acid, dimethylarsinic acid, methylarsonic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, the tetramethylarsonium cation and four arsenoriboses) by HPLC–ICP–MS. Total arsenic concentrations were in the range of 0.27 mg As (kg dry mass)−1 (Vaccinium vitis idaea) to 8.45 mg As (kg dry mass)−1 (Equisetum pratense). Arsenic compounds were extracted with two different extractants [water or methanol/water (9:1)]. Extraction yields achieved with water [7% (Alectoria ochroleuca) to 71% (Equisetum pratense)] were higher than those with methanol/water (9:1) [4% (Alectoria ochroleuca) to 22% (Deschampsia cespitosa)]. The differences were caused mainly by better extraction of inorganic arsenic (green plants) and an arsenoribose (lichens) by water. Inorganic arsenic was detected in all extracts. Dimethylarsinic acid was identified in nine green plants. One of the lichens (Alectoria ochroleuca) contained traces of methylarsonic acid, and this compound was also detected in nine of the green plants. Arsenobetaine was a major arsenic compound in extracts of the lichens, but except for traces in the grass Deschampsia cespitosa, it was not detected in the green plants. In contrast to arsenobetaine, trimethylarsine oxide was found in all samples. The tetramethylarsonium cation was identified in the lichen Alectoria ochroleuca and in four green plants. With the exception of the needles of the tree Larix decidua the arsenoribose (2′R)‐dimethyl[1‐O‐(2′,3′‐dihydroxypropyl)‐5‐deoxy‐β‐D ‐ribofuranos‐5‐yl]arsine oxide was identified at the low μg kg−1 level or as a trace in all plants investigated. In the lichens an unknown arsenic compound, which did not match any of the standard compounds available, was also detected. Arsenocholine and three of the arsenoriboses were not detected in the samples. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
9.
Total arsenic concentrations and the concentrations of individual arsenic compounds were determined in liver samples of pinnipeds [nine ringed seals (Phoca hispida), one bearded seal (Erginathus barbatus)] and cetaceans [two pilot whales (Globicephalus melas), one beluga whale (Deliphinapterus leucus)]. Total arsenic concentrations ranged from 0.167 to 2.40 mg As kg−1 wet mass. The arsenic compounds extracted from the liver samples with a methanol/water mixture (9:1, v/v) were identified and quantified by anion- and cation-exchange chromatography. An ICP–MS equipped with a hydraulic high-pressure nebulizer served as the arsenic-specific detector. Arsenobetaine (0.052–1.67 mg As kg−1 wet mass) was the predominant arsenic compound in all the liver samples. Arsenocholine was present in all livers (0.005–0.044 mg As kg−1 wet mass). The tetramethylarsonium cation was detected in all pinnipeds ( < 0.009 to 0.043 mg As kg−1) but not in any of the cetaceans. The concentration of dimethylarsinic acid ranged from < 0.001 to 0.109 mg As kg−1 wet mass. Most of the concentrations for methylarsonic acid ( < 0.001 to 0.025 mg As kg−1 wet mass) were below the detection limit. Arsenous acid and arsenic acid concentrations were below the detection limit of the method (0.001 mg As kg−1). An unknown arsenic compound was present in all liver samples at concentrations from 0.002–0.027 mg As kg−1. © 1998 John Wiley & Sons, Ltd.  相似文献   
10.
Three mushroom species from two old arsenic smelter sites in Austria were analyzed for arsenic compounds. The total arsenic concentrations were determined by ICP–MS. Collybia maculata contained 30.0 mg, Collybia butyracea 10.9 mg and Amanita muscaria 21.9 mg As kg−1 dry mass. The arsenic compounds extracted with methanol/water (9:1) from the dried mushroom powders were separated by HPLC on anion-exchange and reversed-phase columns and detected by ICP-MS using a hydraulic high-pressure nebulizer. In Collybia maculata almost all arsenic is present as arsenobetaine. Collybia butyracea contained mainly arsenobetaine (8.8 mg As kg−1 dry mass) and dimethylarsinic acid (1.9 mg As kg−1). Amanita muscaria contained arsenobetaine (15.1 mg As kg−1), traces of arsenite, dimethylarsinic acid and arsenate, and surprisingly arsenocholine (2.6 mg As kg−1) and a tetramethylarsonium salt (0.8 mg As kg−1). © 1997 by John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号