首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1058篇
  免费   78篇
  国内免费   73篇
化学   1145篇
晶体学   4篇
综合类   7篇
数学   4篇
物理学   49篇
  2024年   6篇
  2023年   9篇
  2022年   25篇
  2021年   47篇
  2020年   37篇
  2019年   37篇
  2018年   31篇
  2017年   33篇
  2016年   38篇
  2015年   40篇
  2014年   39篇
  2013年   89篇
  2012年   60篇
  2011年   54篇
  2010年   39篇
  2009年   46篇
  2008年   39篇
  2007年   40篇
  2006年   34篇
  2005年   66篇
  2004年   44篇
  2003年   44篇
  2002年   36篇
  2001年   14篇
  2000年   13篇
  1999年   16篇
  1998年   19篇
  1997年   30篇
  1996年   30篇
  1995年   23篇
  1994年   28篇
  1993年   13篇
  1992年   27篇
  1991年   7篇
  1990年   6篇
  1989年   12篇
  1988年   19篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1979年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1209条查询结果,搜索用时 437 毫秒
1.
O-Methylation is of outstanding importance in structural polysaccharide chemistry. A novel method for the methylation of polysaccharides using microwave (MW) irradiation is described. Seed gum from Cyamopsis tetragonolobus (Guar) was fully methylated with dimethyl sulphate and sodium hydroxide using 100% microwave power for 4 min in 68% yield. The completely methylated seed gum thus obtained was hydrolyzed by 70% formic acid followed by 0.5N H2SO4 under full microwave power for 1.16 and 1.66 min, respectively. The partially methylated monosaccharides were separated and identified.  相似文献   
2.
We calculated the intake of each chemical species of dietary arsenic by typical Japanese, and determined urinary and blood levels of each chemical species of arsenic. The mean total arsenic intake by 35 volunteers was 195±235 (15.8-1039) μg As day?1, composed of 76% trimethylated arsenic (TMA), 17.3% inorganic arsenic (Asi), 5.8% dimethylated arsenic (DMA), and 0.8% monomethylated arsenic (MA): the intake of TMA was the largest of all the measured species. Intake of Asi characteristically and invariably occurred in each meal. Of the intake of Asi, 45-75% was methylated in vivo to form MA and DMA, and excreted in these forms into urine. The mean measured urinary total arsenic level in 56 healthy volunteers was 129±92.0 μg As dm?3, composed of 64.6% TMA, 26.7% DMA, 6.7% Asi and 2.2% MA. The mean blood total arsenic level in the 56 volunteers was 0.73±0.57 μg dl?1, composed of 73% TMA, 14% DMA and 9.6% Asi. The urinary TMA levels proved to be significantly correlated with the whole-blood TMA levels (r = 0.376; P<0.01).  相似文献   
3.
The relationship between the four components, (1) fluorescence intensity, (2) arsenic concentration, (3) pH and (4) total dissolved solids, (TDS) measured in well waters from areas in Taiwan where blackfoot disease (BFD) is endemic was studied, as well as the relationships between the four degrees of BFD and each of the above four symptomatic components, in order to evaluate the etiological factors of BFD more progressively. The following 95% confidence intervals were obtained in well water samples (n = 1189): fluorescence intensity, 26.837–32.570; arsenic concentration, 0.103–0.127 mg dm?3; pH, 7.466–7.519; and TDS 733.063–801.647 mg dm?3. Fluorescence intensities of the four degrees of BFD were not all the same (F = 64.54, P < 0.001), and nor were arsenic concentrations (F = 72.03, P < 0.001), pH values (F = 7.30, P < 0.001), nor TDS values (F = 10.76, P < 0.001). In addition, multiple comparisons indicate that the higher the epidemical degree, the higher the fluorescence intensities, arsenic concentrations and pH values become; however, such a relationship is not found for TDS values. Moreover, the fluorescence intensities have positive linear correlations with arsenic concentrations (r = 0.49, P < 0.001), pH (r = 0.25, P < 0.001), and TDS (r = 0.18, P < 0.001), as do the arsenic concentrations with pH (r = 0.22, P < 0.001). Of the four epidemical degree groups, pairs are not significantly different from one another in correlation coefficients between fluorescence intensity and arsenic concentration, which implies a steady relationship between fluorescent compounds and arsenic. We conclude that fluorescent compounds in well water, as possible etiological factors of BFD, are closely related to arsenic along with pH and TDS values in the areas where BFD is endemic. In addition, we infer that a complex is formed by fluorescent compounds, arsenic and other metals.  相似文献   
4.
It is well-recognized that DNA methylation and histone modifications play critical roles in epigenetic regulation of gene activity through the alteration of chromatin structure. Recent studies have shown that in a subset of cancer cells, the silencing of the human E-cadherin (CDH1) gene is associated with hypermethylation of the CpG island. However, the associated molecular mechanism remains unclear. To understand the mechanism, we have investigated the alteration of CpG island methylation and histone modifications during the reactivation of the CDH1 gene by treatment with 5-aza-2′-deoxycytidine (5-aza-dC). Although the CDH1 gene expression was recovered by treatment with 5-aza-dC in a liver cancer cell line Li21, the methylation status of the entire CpG island and acetylation and methylation status of associated histones were not significantly altered. These results demonstrate that the silenced CDH1 gene can be reactivated without apparent alteration of histone modification or CpG island methylation.  相似文献   
5.
The toxicity of inorganic trivalent arsenic for living organisms is reduced by in vivo methylation of the element. In man, this biotransformation leads to the synthesis of monomethylarsonic (MMA) and dimethylarsinic (DMA) acids, which are efficiently eliminated in urine along with the unchanged form (Asi). In order to document the methylation process in humans, the kinetics of Asi, MMA and DMA elimination were studied in volunteers given a single dose of one of these three arsenicals or repeated doses of Asi. The arsenic methylation efficiency was also assessed in subjects acutely intoxicated with arsenic trioxide (As2O3) and in patients with liver diseases. Several observations in humans can be explained by the properties of the enzymic systems involved in the methylation process which we have characterized in vitro and in vivo in rats as follows: (1) production of Asi metabolites is catalyzed by an enzymic system whose activity is highest in liver cytosol; (2) different enzymic activities, using the same methyl group donor (S-adenosylmethionine), lead to the production of mono- and di-methylated derivatives which are excreted in urine as MMA and DMA; (3) dimethylating activity is highly sensitive to inhibition by excess of inorganic arsenic; (4) reduced glutathione concentration in liver moderates the arsenic methylation process through several mechanisms, e.g. stimulation of the first methylation reaction leading to MMA, facilitation of Asi uptake by hepatocytes, stimulation of the biliary excretion of the element, reduction of pentavalent forms before methylation, and protection of a reducing environment in the cells necessary to maintain the activity of the enzymic systems.  相似文献   
6.
It is thought that the extensive industrial use of arsenic, gallium and indium, which have applications as the materials for III–V semiconductors, will increase human exposure to these compounds in the near future. We have undertaken the development of new biological indicators for assessing exposure to these elements. Element-specific alterations in protein synthesis patterns were expected to occur following exposure to arsenic compounds. We examined alterations in protein synthesis in primary cultures of rat kidney proximal tubule epithelial cells by sodium arsenite, gallium chloride and indium chloride, utilizing two-dimensional gel electrophoresis. After incubation with the chemicals for 20 h, newly synthesized proteins were labeled with [35S]methionine. A protein with a molecular weight (Mr) of 30 000 was markedly induced on exposure to 10 μM arsenite or 300 μM gallium chloride, and synthesis of proteins with Mr values of 85 000, 71 000, 65 000, 51 000, 38 000 and 28 000 were also increased by exposure to arsenite and gallium chloride. No significant changes were observed upon exposure to indium. Some of these increased proteins could be heat-shock proteins.  相似文献   
7.
Polyphysa peniculus was grown in artificial seawater in the presence of arsenate, arsenite, monomethylarsonate and dimethylarsinic acid. The separation and identification of some of the arsenic species produced in the cells as well as in the growth medium were achieved by using hydride generation–gas chromatography–atomic absorption spectrometry methodology. Arsenite and dimethylarsinate were detected following incubation with arsenate. When the alga was treated with arsenite, dimethylarsinate was the major metabolite in the cells and in the growth medium; trace amounts of monomethylarsonate were also detected in the cells. With monomethylarsonate as a substrate, the metabolite is dimethylarsinate. Polyphysa peniculus did not metabolize dimethylarsinic acid when it was used as a substrate. Significant amounts of more complex arsenic species, such as arsenosungars, were not observed in the cells or medium on the evidence of flow injection–microwave digestion–hydride generation–atomic absorption spectrometry methodology. Transfer of the exposed cells to fresh medium caused release of most cell–associated arsenicals to the surrounding environment.  相似文献   
8.
Humans are exposed via air, water and food to a number of different arsenic compounds, the physical, chemical, and toxicological properties of which may vary considerably. In people eating much fish and shellfish the intake of organic arsenic compounds, mainly arsenobetaine, may exceed 1000 μg As per day, while the average daily intake of inorganic arsenic is in the order of 10–20 μg in most countries. Arsenobetaine, and most other arsenic compounds in food of marine origin, e.g. arsenocholine, trimethylarsine oxide and methylarsenic acids, are rapidly excreted in the urine and there seem to be only minor differences in metabolism between animal species. Trivalent inorganic arsenic (AsIII) is the main form of arsenic interacting with tissue constituents, due to its strong affinity for sulfhydryl groups. However, a substantial part of the absorbed AsIII is methylated in the body to less reactive metabolities, methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are rapidly excreted in the urine. All the different steps in the arsenic biotransformation in mammals have not yet been elucidated, but it seems likely that the methylation takes place mainly in the liver by transfer of methyl groups from S-adenosylmethionine to arsenic in its trivalent oxidation state. A substantial part of absorbed arsenate (AsV) is reduced to AsIII before being methylated in the liver. There are marked species differences in the methylation of inorganic arsenic. In most animal species DMA is the main metabolite. Compared with human subjects, very little MMA is produced. The marmoset monkey is the only species which has been shown unable to methylate inorganic arsenic. In contrast to other species, the rat shows a marked binding of DMA to the hemoglobin, which results in a low rate of urinary excretion of arsenic.  相似文献   
9.
The acute influences of arsenic compounds on the metabolism of porphyrins and heme in various organs of rats after oral or intratracheal administration of disodium arsenate (Na2HAsO4) and gallium arsenide (GaAs) were examined and compared. For the oral administration experiments, 21 or 84 mg of Na2HAsO4, or 2 or 4 g of GaAs, per cm3 saline per kg body weight of each animal was administered to Jcl: Wistar male rats and the organs were removed after exsanguination from the vein of the right axilla under anesthesia with ether, 16 h after administration. In the case of intratracheal administration, rats given 8.2 or 16.4 mg of Na2HAsO4, or 0.2 or 0.4 g GaAs per cm3 saline per kg body weight were examined under the same experimental conditions as for the administration route. Increase in the body weight of rats was suppressed after intratracheal administration of the two arsenic compounds. In these rats the hematocrit value increased significantly. These changes were not shown by the orally administered rats. Elevation in δ-aminolevulinate synthase (ALA-S, EC 2.3.1.37) activity in erythroblasts by Na2HAsO4 was much higher after intratracheal administration than after oral administration. Suppression in the activities of δ-aminolevulinate dehydratase (ALA-D, EC 4.2.1.24) and porphobilinogen deaminase (PBG-D, EC 4.3.1.8) in peripheral erythrocytes by Na2HAsO4 and GaAs were stronger by intratracheal administration than by the oral route. Influences of GaAs on the activity of PBG-D in rat liver were shown to be more effective by oral administration than by the intratracheal route. Oral administration of Na2HAsO4 and GaAs had a stronger suppression effect on the activities of ALA-D and PBG-D in rat kidney. It seems from these results that the different extents of the influence of arsenic compounds might depend on the routes of intake.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号