首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   8篇
  2022年   2篇
  2021年   4篇
  1999年   1篇
  1994年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
张可佳  周德和  顾群  徐修容 《色谱》1994,12(2):95-97
应用毛细管区带电泳(CZE)分析测定阿片受体、抗独特型抗羟甲芬太尼抗体等生物大分子样品。熔融石英毛细管柱为60cm×100μmi.d.(从进样到检测器长度为50cm),以硼砂-氢氧化钾为缓冲液。结果表明缓冲液的pH影响CZE对阿片受体的分析,当pH为9.0时分析效果最理想,重现性良好,测得的两个主峰与同批样品进行SDS-PAGE分析得到的两个条带相符。用CZE分析抗独特型抗羟甲芬太尼抗体(IgG),表明用PrOteinA-Sepharose亲和色谱分离得到部分纯化的IgG,迁移时间不同于对照豚鼠的IgG。  相似文献   
2.
Single domain antibodies from camelids, or nanobodies, are a unique class of antibody fragments with several advantageous characteristics: small monomeric size, high stability and solubility and easy tailoring for multiple applications. Nanobodies are gaining increasing acceptance as diagnostic tools and promising therapeutic agents in cancer and other diseases. While most nanobodies are obtained from immunized animals of the camelid family, a few synthetic nanobody libraries constructed in recent years have shown the capability of generating high quality nanobodies in terms of affinity and stability. Since this synthetic approach has important advantages over the use of animals, the recent advances are indeed encouraging. Here we review over a dozen synthetic nanobody libraries reported so far and discuss the different approaches followed in their construction and validation, with an emphasis on framework and hypervariable loop design as critical issues defining their potential as high-class nanobody sources.  相似文献   
3.
Site-specific conjugation of proteins is currently required to produce homogenous derivatives for medicine applications. Proteins derivatized at specific positions of the polypeptide chain can actually show higher stability, superior pharmacokinetics, and activity in vivo, as compared with conjugates modified at heterogeneous sites. Moreover, they can be better characterized regarding the composition of the derivatization sites as well as the conformational and activity properties. To this aim, several site-specific derivatization approaches have been developed. Among these, enzymes are powerful tools that efficiently allow the generation of homogenous protein–drug conjugates under physiological conditions, thus preserving their native structure and activity. This review will summarize the progress made over the last decade on the use of enzymatic-based methodologies for the production of site-specific labeled immunoconjugates of interest for nuclear medicine. Enzymes used in this field, including microbial transglutaminase, sortase, galactosyltransferase, and lipoic acid ligase, will be overviewed and their recent applications in the radiopharmaceutical field will be described. Since nuclear medicine can benefit greatly from the production of homogenous derivatives, we hope that this review will aid the use of enzymes for the development of better radio-conjugates for diagnostic and therapeutic purposes.  相似文献   
4.
Mycotoxins, the small size secondary metabolites of fungi, have posed a threat to the safety of medicine, food and public health. Therefore, it is essential to create sensitive and effective determination of mycotoxins. Based on the special affinity between antibody and antigen, immunoassay has been proved to be a powerful technology for the detection of small analytes. However, the tedious preparation and instability of conventional antibodies restrict its application on easy and fast mycotoxins detection. By virtue of simplicity, ease of use, and lower cost, phage display library provides novel choices for antibodies or hapten conjugates, and lead random peptide or recombinant antibody to becoming the promising and environmental friendly immune-reagents in the next generation of immunoassays. This review briefly describes the latest developments on mycotoxins detection using M13 phage display, mainly focusing on the recent applications of phage display technology employed in mycotoxins detection, including the introduction of phage and phage display, the types of phage displayed peptide/recombinant antibody library, random peptides/recombinant antibodies-based immunoassays, as well as simultaneous determination of multiple mycotoxins.  相似文献   
5.
6.
纳米抗体来源于天然缺失轻链的重链抗体可变区,是已知最小抗原结合单元.该研究构建了抗黄曲霉毒素B1(AFB1)纳米抗体的单价及多价串联体,分别与绿色荧光蛋白(GFP)编码片段融合并克隆至原核表达载体pET30.以大肠杆菌BL21(DE3)作为表达宿主,通过异丙基-β-D硫代吡喃半乳糖苷诱导,亲和层析技术分别纯化单、双及三...  相似文献   
7.
Background: Nanobodies, or VHHs, are derived from heavy chain-only antibodies (hcAbs) found in camelids. They overcome some of the inherent limitations of monoclonal antibodies (mAbs) and derivatives thereof, due to their smaller molecular size and higher stability, and thus present an alternative to mAbs for therapeutic use. Two nanobodies, Nb23 and Nb24, have been shown to similarly inhibit the self-aggregation of very amyloidogenic variants of β2-microglobulin. Here, the structure of Nb23 was modeled with the Chemical-Shift (CS)-Rosetta server using chemical shift assignments from nuclear magnetic resonance (NMR) spectroscopy experiments, and used as prior knowledge in PONDEROSA restrained modeling based on experimentally assessed internuclear distances. Further validation was comparatively obtained with the results of molecular dynamics trajectories calculated from the resulting best energy-minimized Nb23 conformers. Methods: 2D and 3D NMR spectroscopy experiments were carried out to determine the assignment of the backbone and side chain hydrogen, nitrogen and carbon resonances to extract chemical shifts and interproton separations for restrained modeling. Results: The solution structure of isolated Nb23 nanobody was determined. Conclusions: The structural analysis indicated that isolated Nb23 has a dynamic CDR3 loop distributed over different orientations with respect to Nb24, which could determine differences in target antigen affinity or complex lability.  相似文献   
8.
An uptake or a release of heat accompanies practically all molecular binding interactions. Therefore isothermal titration microcalorimetry is universally applicable for the characterisation of such binding processes. Calorimetric analyses do not require marker molecules or intrinsic spectroscopic reporter groups, which can modify the analysed interactions. Furthermore, measurements are carried out in solution and the adsorption of reactants to a solid phase is thus avoided. At variance with most other analytical approaches, titration calorimetry determines simultaneously enthalpy and entropy contributions of the binding interactions, as well as the binding constant and stoichiometry. In our analyses of the interactions between monoclonal antibodies and candidate antigens for vaccines vs. malaria and malignant melanoma, isothermal titration calorimetry has turned out to be a very valuable technique. The obtained quantitative data on biomolecular interactions can substantially support the rational design of epitope-focused vaccines.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号