首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   31篇
  国内免费   97篇
化学   959篇
晶体学   12篇
力学   1篇
综合类   3篇
物理学   21篇
  2024年   1篇
  2023年   6篇
  2022年   8篇
  2021年   15篇
  2020年   19篇
  2019年   29篇
  2018年   18篇
  2017年   27篇
  2016年   18篇
  2015年   21篇
  2014年   40篇
  2013年   82篇
  2012年   41篇
  2011年   43篇
  2010年   27篇
  2009年   29篇
  2008年   47篇
  2007年   43篇
  2006年   52篇
  2005年   55篇
  2004年   60篇
  2003年   45篇
  2002年   42篇
  2001年   35篇
  2000年   32篇
  1999年   28篇
  1998年   25篇
  1997年   25篇
  1996年   21篇
  1995年   13篇
  1994年   11篇
  1993年   11篇
  1992年   15篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1984年   1篇
  1982年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有996条查询结果,搜索用时 968 毫秒
1.
The mechanism of lithium insertion that occurs in an iron oxyfluoride sample with a hexagonal–tungsten–bronze (HTB)-type structure was investigated by the pair distribution function. This study reveals that upon lithiation, the HTB framework collapses to yield disordered rutile and rock salt phases followed by a conversion reaction of the fluoride phase toward lithium fluoride and nanometer-sized metallic iron. The occurrence of anionic vacancies in the pristine framework was shown to strongly impact the electrochemical activity, that is, the reversible capacity scales with the content of anionic vacancies. Similar to FeOF-type electrodes, upon de-lithiation, a disordered rutile phase forms, showing that the anionic chemistry dictates the atomic arrangement of the re-oxidized phase. Finally, it was shown that the nanoscaling and structural rearrangement induced by the conversion reaction allow the in situ formation of new electrode materials with enhanced electrochemical properties.  相似文献   
2.
Studies on the anionic polymerization of methyl methacrylate in tetrahydrofuran and in the presence of sparteine have revealed a beneficial effect due to this additive, resulting in a decrease in the extent of termination. Better control of the definition of the polymers formed can thus be achieved in the presence of this additive. On the other hand, macromolecular engineering requires a range of active species concentrations lower than 10?3 mol L?1 and particularly the synthesis of polymers of high molar masses. For a better understanding of the mechanism of chain growth under such concentration conditions, the kinetics of polymerization have been investigated with a technique based on adiabatic calorimetry. Sparteine has been found to lack sufficient cation‐binding power to prevent the propagating enolate ion pairs from aggregating. The rate constant of propagation of nonaggregated species has been estimated, as well as the aggregation constant of equilibrium. For very low initiator concentrations, termination reactions have been shown to profoundly alter the control of the polymerization and to prevent a quantitative monomer conversion. Theoretical maximal conversions have been calculated from kinetic data and compare well with the experimental values. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4964–4975, 2004  相似文献   
3.
To study living anionic polymerization, 3‐(triethylsilyl)propyl isocyanate (TEtSPI) monomer was synthesized by hydrosilylation of allylamine with triethylsilane and treatment of the resulting amine with triphosgene. The polymerization of TEtSPI was performed with sodium naphthalenide (Na‐Naph) as an initiator and in the absence and presence of sodium tetraphenylborate (NaBPh4) as an additive in tetrahydrofuran (THF) at ?78 and at ?98 °C. A highly stabilized amidate anion for living polymerization of isocyanates was generated for the first time with the combined effect of the bulky substituent and the shielding action of the additive NaBPh4, extending the living character at least up to 120 min at ?98 °C. Even the anion could exist at ?78 °C for 10 min. A block copolymer, poly(n‐hexyl isocyanate)‐b‐poly[(3‐triethylsilyl)propyl isocyanate]‐b‐poly(n‐hexyl isocyanate), was synthesized with quantitative yields and controlled molecular weights via living anionic polymerization in THF at ?78 °C for TEtSPI and ?98 °C for n‐hexyl isocyanate, respectively, with Na‐Naph with three times of NaBPh4 as a common ion salt. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 933–940, 2004  相似文献   
4.
A series of five tetrablock quarterpolymers of styrene, isoprene, dimethylsiloxane, and 2-vinylpyridine with molecular weights varying from 117 × 103 to 177 × 103 and having different compositions were synthesized. The synthesis was based on recent advances in the controlled high-vacuum anionic polymerization of hexamethylcyclotrisiloxane and on the selective linking of poly(dimethylsiloxane)lithium with the chlorosilane group of the heterofunctional linking agent chloromethylphenylethylene dimethylchlorosilane. Combined characterization results by size exclusion chromatography, membrane osmometry, and NMR spectroscopy suggested that the synthesized multiblock multicomponent polymers had a high degree of structural and compositional homogeneity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 514–519, 2004  相似文献   
5.
A combination of nitroxide‐mediated radical polymerization and living anionic polymerization was used to synthesize a series of well‐defined graft (co)polymers with “V‐shaped” and “Y‐shaped” branches. The polymer main chain is a copolymer of styrene and p‐chloromethylstyrene (PS‐co‐PCMS) prepared via nitroxide‐mediated radical polymerization. The V‐shaped branches were prepared through coupling reaction of polystyrene macromonomer, carrying 1,1‐diphenylethylene terminus, with polystyryllithium or polyisoprenyllithium. The Y‐shaped branches were prepared throughfurther polymerization initiated by the V‐shaped anions. The obtained branches, carrying a living anion at the middle (V‐shaped) or at the end of the third segment (Y‐shaped), were coupled in situ with pendent benzyl chloride of PS‐co‐PCMS to form the target graft (co)polymers. The purified graft (co)polymers were analyzed by size exclusion chromatography equipped with a multiangle light scattering detector and a viscometer. The result shows that the viscosities and radii of gyration of the branched polymers are remarkably smaller than those of linear polystyrene. In addition, V‐shaped product adopts a more compact conformation in dilute solution than the Y‐shaped analogy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4013–4025, 2007  相似文献   
6.
The first successful example of the formation of polycarbonate from 1-atm carbon dioxide and epoxide was demonstrated by the alternating copolymerization of carbon dioxide and epoxide with manganese porphyrin as a catalyst. The copolymerization of carbon dioxide and cyclohexene oxide with (porphinato)manganese acetate proceeded under the 1-atm pressure of carbon dioxide to give a copolymer with an alternating sequence. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3549–3555, 2003  相似文献   
7.
8.
3‐Miktoarm star copolymers, 3μ‐D2V, with two poly(dimethylsiloxane) (PDMS) and one poly(2‐vinylpyridine) (P2VP) arm, were synthesized by using anionic polymerization–high vacuum techniques and (chloromethylphenylethyl)methyl dichlorosilane, heterofunctional linking agent, with two SiCl groups and one CH2Cl group. The synthetic strategy involves the selective reaction of the two ? SiCl groups with PDMSOLi living chains, followed by reaction of the remaining chloromethyl group with P2VPLi. Combined molecular characterization results (size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy) revealed a high degree of structural and compositional homogeneity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 614–619, 2006  相似文献   
9.
The asymmetric polymerization of 4′‐isocyanatobenzo‐18‐crown‐6 with the lithium amide of (S)‐(2‐methoxymethyl)pyrrolidine successfully proceeded to afford end‐functionalized poly(4′‐isocyanatobenzo‐18‐crown‐6) with (S)‐(2‐methoxymethyl)pyrrolidine (polymer 2 ). In the circular dichroism (CD) spectrum of 2 , a clear positive Cotton effect was observed in the range of 240–350 nm corresponding to the absorption of the polymer backbone, indicating that 2 partially formed a one‐handed helical structure, which was preserved by the chirality of (S)‐(2‐methoxymethyl)pyrrolidine bonding to the terminal end in 2 . In the titration experiments for the CD intensity of 2 in the presence of D ‐ and L ‐Phe·HClO4 (where Phe is phenylalanine), a small but remarkable difference was observed in the amount of the chiral guest needed for saturation of the CD intensity and in the saturated CD intensity, indicating that the extremely stable, one‐handed helical part should exist in the main chain of 2 , which was not inverted even when the unfavorable chiral guest for the predominant helical sense, L ‐Phe·HClO4, was added. In addition, helical polymer 2 exhibited a chiral discrimination ability toward racemic guests; that is, the guests were extracted from the aqueous phase into the organic phase with enantiomeric excess. The driving force of the chiral discrimination ability of 2 should certainly be attributed to the one‐handed helical structure in 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 325–334, 2006  相似文献   
10.
Natural human hair was modified by the graft polymerization of propylene sulfide in an aqueous medium. The amount of the polymer grafted onto the reduced hair was 0.15–0.19 g on 1.0 g of hair. The grafted polymer was isolated by the hydrolysis of the hair in the polymer‐grafted hair under basic conditions and was confirmed to be poly(propylene sulfide) by 1H NMR, 13C NMR, and Fourier transform infrared spectra. The number‐average molecular weights of the isolated polymers from the grafted products were 10,000–12,000. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3778–3786, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号