首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   5篇
化学   36篇
  2023年   3篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
排序方式: 共有36条查询结果,搜索用时 125 毫秒
1.
The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme‐catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non‐ inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside‐modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular‐recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4′(ANT(4′)), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4′) seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non‐inactivable derivatives a challenging task.  相似文献   
2.
魏莉莉  薛霞  武传香  丁一  卢兰香  王骏  刘艳明 《色谱》2021,39(12):1374-1381
该研究系统地优化了样品前处理过程及仪器分析中影响氨基糖苷残留分析准确度与灵敏度的各主要因素,建立了鸡蛋中10种氨基糖苷类药物(链霉素、双氢链霉素、潮霉素B、卡那霉素、阿米卡星、妥布霉素、安普霉素、大观霉素、新霉素、庆大霉素)残留量的混合型离子交换液相色谱-串联质谱分析方法。样品经10 mmol/L乙酸铵缓冲溶液(含0.4 mmol/L EDTA和50 g/L三氯乙酸)超声提取,调节pH至6~7后,经PRiME HLB固相萃取柱富集净化,采用SIELC Obelisc R色谱柱分离,以乙腈和1.0%(v/v)甲酸水溶液(含1 mmol/L甲酸铵)为流动相进行梯度洗脱,在正离子、多反应监测模式下经串联质谱仪测定,外标法定量。该方法在5~200 μg/L质量浓度范围内线性关系良好,相关系数(r2)均大于0.99;方法的检出限(LOD, S/N≥3)为2~5 μg/kg,定量限(LOQ, S/N≥10)为5~10 μg/kg。在空白鸡蛋中进行LOQ、20 μg/kg、100 μg/kg 3个水平的加标回收实验,方法的平均回收率(n=6)为68.1%~111.3%,相对标准偏差为1.2%~12.3%。利用该方法对市售的20批次鸡蛋样品进行测定,均未检出目标物。本方法简单、灵敏、准确,可实现鸡蛋中10种氨基糖苷类药物残留的批量检测。  相似文献   
3.
4.
In view of the fact that many substances generally exhibit very little ultraviolet absorbance and the absence of native fluorescence, a new strategy with simple instrumentation and excellent analytical performance combining high performance liquid chromatography (HPLC) with resonance Rayleigh scattering (RRS) was developed. It was validated for the quantification of aminoglycosides (AGs). This fact was also carefully calculated by quantum chemistry. However, the sensitivity was probably limited by the volume of flow-through cell. Therefore, the result calls for a suitable one to ensure optimal RRS signal. Interestingly, when serum or urine samples of analytes were analyzed by this method, they were all well resolved without any interference, which would hold a new perspective to be applied in the determination of substances in biological matrix.  相似文献   
5.
6.
Herein we report that an imidazole‐decorated cationic amphiphile derived from the pseudo‐disaccharide nebramine has potent antifungal activity against strains of Candida glabrata pathogens. In combination with the natural bis‐benzylisoquinoline alkaloid tetrandrine the reported antifungal cationic amphiphile demonstrated synergistic antifungal activity against Candida albicans pathogens. This unique membrane disruptor caused no detectible mammalian red blood cell hemolysis at concentrations up to more than two orders of magnitude greater than its minimal inhibitory concentrations against the tested C. glabrata strains. We provide evidence that potency against C. glabrata may be associated with differences between the drug efflux pumps of C. albicans and C. glabrata. Imidazole decorated‐cationic amphiphiles show promise for the development of less toxic membrane‐disrupting antifungal drugs and drug combinations.  相似文献   
7.
8.
C3′‐deoxygenation of aminoglycosides results in their decreased susceptibility to phosphorylation thereby increasing their efficacy as antibiotics. However, the biosynthetic mechanism of C3′‐deoxygenation is unknown. To address this issue, aprD4 and aprD3 genes from the apramycin gene cluster in Streptomyces tenebrarius were expressed in E. coli and the resulting gene products were characterized in vitro. AprD4 is shown to be a radical S‐adenosylmethionine (SAM) enzyme, catalyzing homolysis of SAM to 5′‐deoxyadenosine (5′‐dAdo) in the presence of paromamine. [4′‐2H]‐Paromamine was prepared and used to show that its C4′‐H is transferred to 5′‐dAdo by AprD4, during which the substrate is dehydrated to a product consistent with 4′‐oxolividamine. In contrast, paromamine is reduced to a deoxy product when incubated with AprD4/AprD3/NADPH. These results show that AprD4 is the first radical SAM diol‐dehydratase and, along with AprD3, is responsible for 3′‐deoxygenation in aminoglycoside biosynthesis.  相似文献   
9.
10.
Aminoglycosides, a class of antibiotics that includes gentamicin, kanamycin, neomycin, streptomycin, tobramycin and apramycin, are derived from various streptomyces species. Despite the significant increase in the antibacterial resistant pathogens, aminoglycosides remain an important class of antimicrobial drugs due to their unique chemical structure which offers a broad spectrum of activity. The modification of antibiotics and their subsequent use in supramolecular chemistry is rarely reported. Given the importance of aminoglycosides, here we give a brief overview on the modification of 4,5- and 4,6-disubstituted deoxystreptamine classes of aminoglycosides through supramolecular chemistry and their potential for real world applications. We also make the case that the work in this area is gaining momentum, and there are significant opportunities to meet the challenges of modern antibiotics through the modification of aminoglycosides by harnessing the advantages of supramolecular chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号