首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
化学   18篇
物理学   1篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   1篇
  1997年   1篇
  1993年   1篇
排序方式: 共有19条查询结果,搜索用时 0 毫秒
1.
Heparin binds to and activates antithrombin (AT) through a specific pentasaccharide sequence, in which a trisaccharide subsite, containing glucuronic acid (GlcA), has been considered as the initiator in the recognition of the polysaccharide by the protein. Recently it was suggested that sulfated iduronic acid (IdoA2S) could replace this “canonical” GlcA. Indeed, a heparin octasaccharidic sequence obtained by chemoenzymatic synthesis, in which GlcA is replaced with IdoA2S, has been found to similarly bind to and activate antithrombin. By using saturation-transfer-difference (STD) NMR, NOEs, transferred NOEs (tr-NOEs) NMR and molecular dynamics, we show that, upon binding to AT, this IdoA2S unit develops comparable interactions with AT as GlcA. Interestingly, two IdoA2S units, both present in a 1C4-2S0 equilibrium in the unbound saccharide, shift to full 2S0 and full 1C4 upon binding to antithrombin, providing the best illustration of the critical role of iduronic acid conformational flexibility in biological systems.  相似文献   
2.
The pnictogen nanomaterials, including phosphorene and arsenene, display remarkable electronic and chemical properties. Yet, the structural diversity of these main group elements is still poorly explored. Here we fill single‐wall carbon nanotubes with elemental arsenic from the vapor phase. Using electron microscopy, we find chains of highly reactive As4 molecules as well as two new one‐dimensional allotropes of arsenic: a single‐stranded zig‐zag chain and a double‐stranded zig‐zag ladder. These linear structures are important intermediates between the gas‐phase clusters of arsenic and the extended sheets of arsenene. Raman spectroscopy indicates weak electronic interaction between the arsenic and the nanotubes which implies that the formation of the new allotropes is driven primarily by the geometry of the confinement. The relative stabilities of the new arsenic structures are estimated computationally. Band‐gap calculations predict that the insulating As4 chains become semiconducting, once converted to the zig‐zag ladder, and form a fully metallic allotrope of arsenic as the zig‐zag chain.  相似文献   
3.
4.
To Bi or not to Bi? The synthesis of phosphorus nanorods of two differing morphologies is reported, in both the presence and absence of a bismuth catalyst. Not only do these materials represent a new class of elemental nanorods but they also give valuable insight into the complex allotropy of phosphorus.

  相似文献   

5.
Numerous studies on silicon allotropes with three-dimensional networks or as materials of lower dimensionality have been carried out in the past. Herein, allotropes of silicon, which are based on structures of experimentally accessible [Si9]4− clusters known as stable anionic molecular species in neat solids and in solution, are predicted. Hypothetical oxidative coupling under the formation of covalent Si–Si bonds between the clusters leads to uncharged two-, one- and zero-dimensional silicon nanomaterials not suffering from dangling bonds. A large variety of structures are derived and investigated by quantum chemical calculations. Their relative energies are in the same range as experimentally known silicene, and some structures are even energetically more favorable than silicene. Significantly smaller relative energies are reached by the insertion of linkers in form of tetrahedrally connected Si atoms. A chessboard pattern built of Si9 clusters bridged by tetrahedrally connected Si atoms represents a two-dimensional silicon species with remarkably lower relative energy in comparison with silicene. We discuss the structural and electronic properties of the predicted silicon materials and their building block nido-[Si9]4– based on density functional calculations. All considered structures are semiconductors. The band structures exclusively show bands of low dispersion, as is typical for covalent polymers.  相似文献   
6.
7.
The study of ligand stabilised mono‐ and diatomic zero oxidation state complexes is a young and fascinating topic. This area merges the fields of low‐oxidation‐state main‐group chemistry, homoatomic multiple bonding and fundamental coordination chemistry. As with a great deal of recent coordination chemistry within the d‐block, carbene ligands are clearly the star of the show, highlighting their importance within the p‐block as well. This Minireview focuses on the significant developments of the past two years.  相似文献   
8.
We have investigated the structural principles and thermoelectric properties of polytypic group 14 clathrate‐II frameworks using quantum chemical methods. The experimentally known cubic 3C polytype was found to be the energetically most favorable framework, but the studied hexagonal polytypes (2 H, 4 H, 6 H, 8 H, 10 H) lie energetically close to it. In the case of germanium, the energy difference between the 3C and 6H clathrate‐II polytypes is ten times smaller than the difference between the experimentally known 3C‐Ge (α‐Ge) and 4H‐Ge polytypes. The thermoelectric properties of guest‐occupied clathrate‐II structures were investigated for compositions Na–Rb–Ga–Ge and Ge–As–I. The clathrate‐II structures show promising thermoelectric properties and the highest Seebeck coefficients and thermoelectric power factors were predicted for the 3C polytype. The structural anisotropy of the largest studied hexagonal polytypes affects their thermoelectric power factors by over a factor of two.  相似文献   
9.
10.
The geometrical and electronic structures of two isomers (1 and2) of the polyhedral boron nitride molecule, B12N12, have been calculated using the MNDO method. Structure1 having the form of a truncated octahedron is more energetically preferable (ΔH f 0=−128 kcal mol−1) than isomer2, which hasC 6v symmetry. The equilibrium geometries of the N6B6(CH2)6 isomers (3 and4), which simulate fragments of structure2, have been calculated. The stabilization mechanism of the N6 nitrogen cluster (hexaazabenzene) in polyhedral structures is discussed. The parameters calculated for molecules1 and2 have been correlated with the corresponding characteristics of their carbon analogs. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1712–1714, October, 1993.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号